Relations and Functions

Ex 1.1

Question 1.
Find $\mathrm{A} \times \mathrm{B}, \mathrm{A} \times \mathrm{A}$ and $\mathrm{B} \times \mathrm{A}$
(i) $A=\{2,-2,3\}$ and $B=\{1,-4\}$
(ii) $\mathrm{A}=\mathrm{B}=\{\mathrm{p}, \mathrm{q}]$
(iii) $A=\{m, n\} ; B=(\Phi)$

Solution:
(i) $\mathrm{A}=\{2,-2,3\}, \mathrm{B}=\{1,-4\}$
$\mathrm{A} \times \mathrm{B}=\{(2,1),(2,-4),(-2,1),(-2,-4),(3,1),(3,-4)\}$
$\mathrm{A} \times \mathrm{A}=\{(2,2),(2,-2),(2,3),(-2,2),(-2,-2),(-2,3),(3,2),(3,-2),(3,3)\}$
$B \times A=\{(1,2),(1,-2),(1,3),(-4,2),(-4,-2),(-4,3)\}$
(ii) $\mathrm{A}=\mathrm{B}=\{(\mathrm{p}, \mathrm{q})]$
$A \times B=\{(p, p),\{p, q),(q, p),(q, q)\}$
$A \times A=\{(p, p),(p, q),(q, p),(q, q)\}$
$B \times A=\{(p, p),\{p, q),(q, p),(q, q)\}$
(iii) $\mathrm{A}=\{\mathrm{m}, \mathrm{n}\} \times \Phi$
$\mathrm{A} \times \mathrm{B}=\{ \}$
$A \times A=\{(m, m),(m, n),(n, m),(n, n)\}$
$\mathrm{B} \times \mathrm{A}=\{ \}$

Question 2.

Let $A=\{1,2,3\}$ and $B=\{\times \mid x$ is a prime number less than 10$\}$. Find $A \times B$ and $B \times A$.
Answer:
$A=\{1,2,3\}, B=\{2,3,5,7\}$
$\mathrm{A} \times \mathrm{B}=\{1,2,3\} \times\{2,3,5,7\}$
$=\{(1,2)(1,3)(1,5)(1,7)(2,2)$
$(2,3)(2,5)(2,7)(3,2)(3,3)(3,5)(3,7)\}$
$\mathrm{B} \times \mathrm{A}=\{2,3,5,7\} \times\{1,2,3\}$
$=\{(2,1)(2,2)(2,3)(3,1)(3,2)(3,3)(5,1)(5,2)(5,3)(7,1)(7,2)(7,3)\}$

Question 3.

If $B \times A=\{(-2,3),(-2,4),(0,3),(0,4),(3,3),(3,4)\}$ find A and B.

Solution:
$\mathrm{B} \times \mathrm{A}=\{(-2,3),(-2,4),(0,3),(0,4),(3,3),(3,4)\}$
$\mathrm{A}=\{3,4), \mathrm{B}=\{-2,0,3\}$

Question 4.

If $A=\{5,6\}, B=\{4,5,6\}, C=\{5,6,7\}$, Show that $A \times A=(B \times B) \cap(C \times C)$
Answer:
$\mathrm{A}=\{5,6\}, \mathrm{B}=\{4,5,6\}, \mathrm{C}=\{5,6,7\}$
$A \times A=\{5,6\} \times\{5,6\}$
$=\{(5,5)(5,6)(6,5)(6,6)\}$
$B \times B=\{4,5,6\} \times\{4,5,6\}$
$=\{(4,4)(4,5)(4,6)(5,4)(5,5)(5,6)(6,4)(6,5)(6,6)\}$
$\mathrm{C} \times \mathrm{C}=\{5,6,7\} \times\{5,6,7\}$
$=\{(5,5)(5,6)(5,7)(6,5)(6,6)(6,7)(7,5)(7,6)(7,7)\}$
$(\mathrm{B} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{C})=\{(5,5)(5,6)(6,5)(6,6)\} \ldots(2)$
From (1) and (2) we get
$\mathrm{A} \times \mathrm{A}=(\mathrm{B} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{C})$

Question 5.

Given $A=\{1,2,3\}, B=\{2,3,5\}, C=\{3,4\}$ and $D=\{1,3,5\}$, check if $(A \cap C) x(B \cap D)=(A \times$ B) $\cap(C \times D)$ is true?

Solution:

LHS $=\{(A \cap C) \times(B \cap D)$
$A \cap C=\{3\}$
$\mathrm{B} \cap \mathrm{D}=\{3,5\}$
$(\mathrm{A} \cap \mathrm{C}) \times(\mathrm{B} \cap \mathrm{D})=\{(3,3)(3,5)\}$
RHS $=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{D})$
$\mathrm{A} \times \mathrm{B}=\{(1,2),(1,3),(1,5),(2,2),(2,3),(2,5),(3,2),(3,3),(3,5)\}$
$\mathrm{C} \times \mathrm{D}=\{(3,1),(3,3),(3,5),(4,1),(4,3),(4,5)\}$
$(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{D})=\{(3,3),(3,5)\} \ldots(2)$
$\therefore(1)=(2) \therefore$ It is true.

Question 6.

Let $A=\{x \in W \mid x<2\}$,
$B=\{x \in N \mid 1<1<x<4\}$ and
$\mathrm{C}=\{3,5\}$. Verify that
(i) $\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})$
(ii) $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$
(iii) $(\mathrm{A} \cup \mathrm{B}) \times \mathrm{C}=(\mathrm{A} \times \mathrm{C}) \cup(\mathrm{B} \times \mathrm{C})$

Answer:
(i) $\mathrm{A}=\{0,1\}$

B $=\{2,3,4\}$
$\mathrm{C}=\{3,5\}$
(i) $\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{c})$
$\mathrm{B} \cup \mathrm{C}=\{2,3,4\} \cup\{3,5\}$
$=\{2,3,4,5\}$
$\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=\{0,1\} \times\{2,3,4,5\}$
$=\{(0,2)(0,3)(0,4)(0,5)(1,2)(1,3)(1,4)(1,5)\} \ldots(1)$
$\mathrm{A} \times \mathrm{B}=\{0,1\} \times\{2,3,4\}$
$=\{(0,2)(0,3)(0,4)(1,2)(1,3)(1,4)\}$
$\mathrm{A} \times \mathrm{C}=\{0,1\} \times\{3,5\}$
$\{(0,3)(0,5)(1,3)(1,5)\}$
$(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})=\{(0,2)(0,3)(0,4)(0,5)(1,2)(1,3)(1,4)(1,5)\} \ldots(2)$
From (1) and (2) we get
$\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})$
(ii) $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \mathrm{n}(\mathrm{A} \times \mathrm{C})$
$\mathrm{B} \cap \mathrm{C}=\{2,3,4\} \cap\{3,5\}$
$=\{3\}$
$\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=\{0,1\} \times\{3\}$
$=\{(0,3)(1,3)\} \ldots(1)$
$\mathrm{A} \times \mathrm{B}=\{0,1\} \times\{2,3,4\}$
$=\{(0,2)(0,3)(0,4)(1,2)(1,3)(1,4)\}$
$\mathrm{A} \times \mathrm{C}=\{0,1\} \times\{3,5\}$
$\{(0,3)(0,5)(1,3)(1,5)\}$
$(\mathrm{A} \times \mathrm{B}) \mathrm{n}(\mathrm{A} \times \mathrm{C})=\{(0,3)(1,3)\} \ldots . .(2)$
From (1) and (2) we get
$\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \mathrm{n}(\mathrm{A} \times \mathrm{C})$
(iii) $(\mathrm{A} \cup \mathrm{B}) \times \mathrm{C}=(\mathrm{A} \times \mathrm{C}) \cup(\mathrm{B} \times \mathrm{C})$
$A \cup B=\{0,1\} \cup\{2,3,4\}$
$=\{0,1,2,3,4\}$
$(A \cup B) \times C=\{0,1,2,3,4\} \times\{3,5\}$
$=\{(0,3)(0,5)(1,3)(1,5)(2,3)(2,5)(3,3)(3,5)(4,3)(4,5)\} \ldots(1)$
$\mathrm{A} \times \mathrm{C}=\{0,1\} \times\{3,5\}$
$=\{(0,3)(0,5)(1,3)(1,5)\}$
$\mathrm{B} \times \mathrm{C}=\{2,3,4\} \times\{3,5\}$
$=\{(2,3)(2,5)(3,3)(3,5)(4,3)(4,5)\}$
$(\mathrm{A} \times \mathrm{C}) \cup(\mathrm{B} \times \mathrm{C})=\{(0,3)(0,5)(1,3)(1,5)(2,3)(2,5)(3,3)(3,5)(4,3)(4,5)\} \ldots(2)$
From (1) and (2) we get
$(A \cup B) \times C=(A \times C) \cup(B \times C)$
Question 7.
Let $\mathrm{A}=$ The set of all natural numbers less than $8, \mathrm{~B}=$ The set of all prime numbers less than $8, \mathrm{C}$ $=$ The set of even prime number. Verify that
(i) $(\mathrm{A} \cap \mathrm{B}) \times \mathrm{c}=(\mathrm{A} \times \mathrm{C}) \cap(\mathrm{B} \times \mathrm{C})$
(ii) $\mathrm{A} \times(\mathrm{B}-\mathrm{C})=(\mathrm{A} \times \mathrm{B})-(\mathrm{A} \times \mathrm{C})$
$\mathrm{A}=\{1,2,3,4,5,6,7\}$
$\mathrm{B}=\{2,3,5,7\}$
C $=\{2\}$
Solution:
(i) $(\mathrm{A} \cap \mathrm{B}) \times \mathrm{C}=(\mathrm{A} \times \mathrm{c}) \cap(\mathrm{B} \times \mathrm{C})$

LHS $=(A \cap B) \times C$
$\mathrm{A} \cap \mathrm{B}=\{2,3,5,7\}$
$(A \cap B) \times C=\{(2,2),(3,2),(5,2),(7,2)\}$
$\mathrm{RHS}=(\mathrm{A} \times \mathrm{C}) \cap(\mathrm{B} \times \mathrm{C})$
$(\mathrm{A} \times \mathrm{C})=\{(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2)\}$
$(\mathrm{B} \times \mathrm{C})=\{2,2),(3,2),(5,2),(7,2)\}$
$(\mathrm{A} \times \mathrm{C}) \cap(\mathrm{B} \times \mathrm{C})=\{(2,2),(3,2),(5,2),(7,2)\}$
(1) $=(2)$
\therefore LHS $=$ RHS. Hence it is verified.
(ii) $\mathrm{A} \times(\mathrm{B}-\mathrm{C})=(\mathrm{A} \times \mathrm{B})-(\mathrm{A} \times \mathrm{C})$

LHS $=\mathrm{A} \times(\mathrm{B}-\mathrm{C})$
$(\mathrm{B}-\mathrm{C})=\{3,5,7\}$
$A \times(B-C) \equiv\{(1,3),(1,5),(1,7),(2,3),(2,5),(2,7),(3,3),(3,5),(3,7),(4,3),(4,5),(4,7),(5$, $3),(5,5),(5,7),(6,3),(6,5),(6,7),(7,3),(7,5),(7,7)\} \ldots \ldots(1)$
RHS $=(\mathrm{A} \times \mathrm{B})-(\mathrm{A} \times \mathrm{C})$
$(A \times B)=\{(1,2),(1,3),(1,5),(1,7)$,
$(2,2),(2,3),(2,5),(2,7)$,
$(3,2),(3,3),(3,5),(3,7)$,
$(4,2),(4,3),(4,5),(4,7)$,
$(5,2),(5,3),(5,5),(5,7)$,
$(6,2),(6,3),(6,5),(6,7)$,
$(7,2),(7,3),(7,5),(7,7)\}$
$(\mathrm{A} \times \mathrm{C})=\{(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2)\}$
$(\mathrm{A} \times \mathrm{B})-(\mathrm{A} \times \mathrm{C})=\{(1,3),(1,5),(1,7),(2,3),(2,5),(2,7),(3,3),(3,5),(3,7),(4,3),(4,5),(4$,
$7),(5,3),(5,5),(5,7),(6,3),(6,5),(6,7),(7,3),(7,5),(7,7)\} \ldots \ldots \ldots . .(2)$
$(1)=(2) \Rightarrow$ LHS $=$ RHS .
Hence it is verified.

Ex 1.2

Question 1.
Let $\mathrm{A}=\{1,2,3,7\}$ and $\mathrm{B}=\{3,0,-1,7\}$, which of the following are relation from A to B ?
(i) $\mathrm{R}_{1}=\{(2,1),(7,1)\}$
(ii) $\mathrm{R}_{2}=\{(-1,1)\}$
(iii) $\mathrm{R}_{3}=\{(2,-1),(7,7),(1,3)\}$
(iv) $\mathrm{R}_{4}=\{(7,-1),(0,3),(3,3),(0,7)\}$
(i) $\mathrm{A}=\{1,2,3,7\}, \mathrm{B}=\{3,0,-1,7\}$

Solution:
$\mathrm{R}_{1}=\{(2,1),(7,1)\}$

It is not a relation there is no element as 1 in B .
(ii) $\mathrm{R}_{2}=\{(-1,1)\}$

It is $\operatorname{not}[\because-1 \notin \mathrm{~A}, 1 \notin \mathrm{~B}]$
(iii) $\mathrm{R}_{3}=\{(2,-1),(7,7),(1,3)\}$

It is a relation.
$\mathrm{R}_{4}=\{(7,-1),(0,3),(3,3),(0,7)\}$
It is also not a relation. $[\because 0 \notin \mathrm{~A}]$

Question 2.

Let $\mathrm{A}=\{1,2,3,4, \ldots ., 45\}$ and R be the relation defined as "is square of" on A . Write R as a subset of $A \times A$. Also, find the domain and range of R.
Answer:
$\mathrm{A}=\{1,2,3,4 \ldots 45\}$
The relation is defined as "is square of'
$\mathrm{R}=\{(1,1)(2,4)(3,9)$
$(4,16)(5,25)(6,36)\}$
Domain of $\mathrm{R}=\{1,2,3,4,5,6\}$
Range of $R=\{1,4,9,16,25,36\}$

Question 3.

A Relation R is given by the set $\{(x, y) / y=x+3, x \in\{0,1,2,3,4,5\}\}$. Determine its domain and range.
Solution:
$\mathrm{x}=\{0,1,2,3,4,5\}$
$y=x+3$

$$
\text { i.e. } y=\left\{\begin{array}{l}
(0+3)=3 \\
(1+3)=4 \\
(2+3)=5 \\
(3+3)=6 \\
(4+3)=7 \\
(5+3)=8
\end{array}\right\}
$$

$\Rightarrow \mathrm{y}=\{3,4,5,6,7,8\}$
$\mathrm{R}=\{(\mathrm{x}, \mathrm{y})\}$
$=\{(0,3),(1,4),(2,5),(3,6),(4,7),(5,8)\}$
Domain of $\mathrm{R}=\{0,1,2,3,4,5\}$
Range of $\mathrm{R}=\{3,4,5,6,7,8\}$

Question 4.

Represent each of the given relation by (a) an arrow diagram, (b) a graph and (c) a set in roster form, wherever possible.
(i) $\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}=2 \mathrm{y}, \mathrm{x} \in\{2,3,4,5\}, \mathrm{y} \in\{1,2,3,4)$
(ii) $\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{y}=\mathrm{x}+3, \mathrm{x}, \mathrm{y}$ are natural numbers $<10\}$

Solution:
(i) $\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}=2 \mathrm{y}, \mathrm{x} \in\{2,3,4,5\}, \mathrm{y} \in\{1,2,3,4\}\} \mathrm{R}=(\mathrm{x}=2 \mathrm{y})$
$2=2 \times 1=2$

$$
4=2 \times 2=4
$$

(a)

(b)

(c) $\{(2,1),(4,2)\}$
(ii) $\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{y}=\mathrm{x}+3, \mathrm{x},+$ are natural numbers $<10\}$
$\mathrm{x}=\{1,2,3,4,5,6,7,8,9\} R=(\mathrm{y}=\mathrm{x}+3)$
$\mathrm{y}=\{1,2,3,4,5,6,7,8,9\}$
$\mathrm{R}=\{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)\}$
(a)

(b)

(c) $\mathrm{R}=\{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)\}$

Question 5.

A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M) and an Executive Officer (E). The company provide $\square 10,000, \square 25,000, \square 50,000$ and $\square 1,00,000$ as salaries to the people who work in the categories $\mathrm{A}, \mathrm{C}, \mathrm{M}$ and E respectively. If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, A_{4} and As were Assistants; $C_{1}, C_{2}, C_{3}, C_{4}$ were Clerks; M_{1}, M_{2}, M_{3} were managers and $\mathrm{E}_{1}, \mathrm{E}_{2}$ were Executive officers and if the relation R is defined by $x R y$, where x is the salary given to
person y, express the relation R through an ordered pair and an arrow diagram.
Solution:
A - Assistants $\rightarrow \mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{5}$
$\mathrm{C}-$ Clerks $\rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$
D - Managers $\rightarrow \mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$
E - Executive officer $\rightarrow \mathrm{E}_{1}, \mathrm{E}_{2}$
(a) $\mathrm{R}=\left\{\left(10,000, \mathrm{~A}_{1}\right),\left(10,000, \mathrm{~A}_{2}\right),\left(10,000, \mathrm{~A}_{3}\right)\right.$,
$\left(10,000, A_{4}\right),\left(10,000, A_{5}\right),\left(25,000, C_{1}\right)$,
$\left(25,000, \mathrm{C}_{2}\right),\left(25,000, \mathrm{C}_{3}\right),\left(25,000, \mathrm{C}_{4}\right)$,
$\left(50,000, \mathrm{M}_{1}\right),\left(50,000, \mathrm{M}_{2}\right),\left(50,000, \mathrm{M}_{3}\right)$,
$\left.\left(1,00,000, \mathrm{E}_{1}\right),\left(1,00,000, \mathrm{E}_{2}\right)\right\}$
(b)

Ex 1.3

Question 1.

Let $f=\{(x, y) \mid x, y \in N$ and $y=2 x\}$ be a relation on N. Find the domain, co-domain and range. Is this relation a function?
Solution:
$\mathrm{F}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}, \mathrm{y} \in \mathrm{N}$ and $\mathrm{y}=2 \mathrm{x}\}$
$\mathrm{x}=\{1,2,3, \ldots\}$
$\mathrm{y}=\{1 \times 2,2 \times 2,3 \times 2,4 \times 2,5 \times 2 \ldots\}$
$\mathrm{R}=\{(1,2),(2,4),(3,6),(4,8),(5,10), \ldots\}$
Domain of $R=\{1,2,3,4, \ldots\}$,
Co-domain $=\{1,2,3 \ldots .$.
Range of $R=\{2,4,6,8,10, \ldots\}$
Yes, this relation is a function.

Question 2.

Let $X=\{3,4,6,8\}$. Determine whether the relation $R=\left\{(x, f(x)) \mid x \in X, f(x)=x^{2}+1\right\}$ is a function from X to N ?
Solution:
$\mathrm{x}=\{3,4,6,8\}$
$R=\left((x, f(x)) \mid x \in X, f(x)=X^{2}+1\right\}$
$f(x)=x^{2}+1$
$f(3)=3^{2}+1=10$
$f(4)=4^{2}+1=17$
$f(6)=6^{2}+1=37$
$f(8)=8^{2}+1=65$

$\mathrm{R}=\{(3,10),(4,17),(6,37),(8,65)\}$
$\mathrm{R}=\{(3,10),(4,17),(6,37),(8,65)\}$
Yes, R is a function from X to N .

Question 3.

Given the function
$f: x \rightarrow x^{2}-5 x+6$, evaluate
(i) $f(-1)$
(ii) $f(2 a)$
(iii) $f(2)$
(iv) $f(x-1)$

Answer:
$f(x)=x^{2}-5 x+6$
(i) $\mathrm{f}(-1)=(-1)^{2}-5(-1)+6=1+5+6=12$
(ii) $\mathrm{f}(2 \mathrm{a})=(2 \mathrm{a})^{2}-5(2 \mathrm{a})+6=4 \mathrm{a}^{2}-10 \mathrm{a}+6$
(iii) $f(2)=2^{2}-5(2)+6=4-10+6=0$
(iv) $f(x-1)=(x-1)^{2}-5(x-1)+6$
$=x^{2}-2 x+1-5 x+5+6$
$=x^{2}-7 x+12$

Question 4.

A graph representing the function $f(x)$ is given in figure it is clear that $f(9)=2$.

(i) Find the following values of the function
(a) $f(0)$
(b) $f(7)$
(c) $\mathrm{f}(2)$
(d) $f(10)$
(ii) For what value of x is $f(x)=1$?
(iii) Describe the following
(i) Domain
(ii) Range.
(iv) What is the image of 6 under f ?

Solution:
From the graph
(a) $f(0)=9$
(b) $f(7)=6$
(c) $f(2)=6$
(d) $f(10)=0$
(ii) At $\mathrm{x}=9.5, \mathrm{f}(\mathrm{x})=1$
(iii) Domain $=\{0,1,2,3,4,5,6,7,8,9,10\}$
$=\{x \mid 0<x<10, x \in R\}$
Range $=\{x \mid 0<x<9, x \in R\}$
$=\{0,1,2,3,4,5,6,7,8,9\}$
(iv) The image of 6 under f is 5 .

Question 5.

Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+5$. If $\mathrm{x} \neq 0$ then find $\frac{f(x+2)-f(2)}{x}$
Solution:

Given $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+5, \mathrm{x} \neq 0$.

$$
\left.\begin{array}{l}
\frac{f(x+2)-f(2)}{x} \\
\qquad f(x)
\end{array}\right)=2 x+50 \text { (2) } \begin{aligned}
& \Rightarrow f(x+2) \\
& =2(x+2)+5 \\
& =2 x+4+5=2 x+9 \\
\Rightarrow f(2) & =2(2)+5=4+5=9 \\
\therefore \frac{f(x+2)-f(2)}{x} & =\frac{2 x+9-9}{x}=\frac{2 x}{x}=2
\end{aligned}
$$

Question 6.

A function fis defined by $f(x)=2 x-3$
(i) find $\frac{f(0)+f(1)}{2}$
(ii) find x such that $f(x)=0$.
(iii) find x such that $f(x)=x$.
(iv) find x such that $f(x)=f(1-x)$.

Solution:
Given $f(x)=2 x-3$
(i) find $\frac{f(0)+f(1)}{2}$
$f(0)=2(0)-3=-3$
$f(1)=2(1)-3=-1$
$\therefore \frac{f(0)+f(1)}{2}=\frac{-3-1}{2}=\frac{-4}{2}=-2$
(ii) $f(x)=0$
$\Rightarrow 2 \mathrm{x}-3=0$
$2 \mathrm{x}=3$
$\mathrm{x}=\frac{3}{2}$
(iii) $f(x)=x$
$\Rightarrow 2 \mathrm{x}-3=\mathrm{x} \Rightarrow 2 \mathrm{x}-\mathrm{x}=3$
$\mathrm{x}=3$
(iv) $f(x)=f(1-x)$
$2 \mathrm{x}-3=2(1-\mathrm{x})-3$
$2 \mathrm{x}-3=2 \mathrm{x}-2 \mathrm{x}-3$
$2 \mathrm{x}+2 \mathrm{x}=2-3+3$
$4 \mathrm{x}=2$
$\mathrm{x}=\frac{2}{4}$
$x=\frac{1}{2}$

Question 7.

An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal squares from the corners and turning up the sides as shown in figure. Express the volume V of the box as a function of x.

Solution:
Volume of the box $=$ Volume of the cuboid
$=1 \times \mathrm{b} \times \mathrm{hcu}$. units
Here $1=24-2 \mathrm{x}$
$\mathrm{b}=24-2 \mathrm{x}$
$\mathrm{h}=\mathrm{x}$
$\therefore \mathrm{V}=(24-2 \mathrm{x})(24-2 \mathrm{x}) \times \mathrm{x}$
$=\left(576-48 \mathrm{x}-48 \mathrm{x}+4 \mathrm{x}^{2}\right) \mathrm{x}$
$V=4 x^{3}-96 x^{2}+576 x$

Question 8.

A function f is defined $b v f(x)=3-2 x$. Find x such that $f(x 2)=(f(x)) 2$.
Solution:
$f(x)=3-2 x$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}^{2}\right)=3-2 \mathrm{x}^{2} \\
&(f(x))^{2}=(3-2 x)^{2}=9-12 x+4 x^{2} \\
& f\left(x^{2}\right)=(f(x))^{2} \Rightarrow 3-2 x^{2}=9-12 x+4 x^{2} \\
& 6 x^{2}-12 x+6=0[\div 6] \\
& x^{2}-2 x+1=0 \\
&(x-1)(x-1)=0 \\
& x=1,1
\end{aligned}
$$

Question 9.

A plane is flying at a speed of 500 km per hour. Express the distance d travelled by the plane as function of time r in hours.
Answer:
Speed of the plane $=500 \mathrm{~km} / \mathrm{hr}$
Distance travelled in " t " hours
$=500 \times \mathrm{t}($ distance $=$ speed \times time $)$
$=500 \mathrm{t}$

Question 10.

The data in the adjacent table depicts the length of a woman's forehand and her corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as $\mathrm{y}=\mathrm{ax}+\mathrm{b}$, where a, b are constants.

Length ' x ' of forehand (in cm)	Height ' y ' (in inches)
35	56
45	65
50	69.5
55	74

(i) Check if this relation is a function.
(ii) Find a and b.
(iii) Find the height of a woman whose forehand length is 40 cm .
(iv) Find the length of forehand of a woman if her height is 53.3 inches.

Solution:
(i) Given $y=a x+b \ldots \ldots \ldots$. (1)

The ordered pairs are $\mathrm{R}=\{(35,56)(45,65)(50,69.5)(55,74)\}$
\therefore Hence this relation is a function.
(ii) Consider any two ordered pairs $\begin{array}{cc}x & y \\ (35, & 56)\end{array}$
$x \quad y$
$(45,65)$ substituting in (1) we get,

$$
\begin{array}{r}
65=45 a+b \\
-56=35 a+b \tag{3}\\
\hline
\end{array}
$$

Subtracting, $9=10 a$

$$
\therefore a=\frac{9}{10}=0.9
$$

Substituting a $=0.9$ in (2) we get
$\Rightarrow 65=45(.9)+\mathrm{b}$
$\Rightarrow 65=40.5+\mathrm{b}$
$\Rightarrow \mathrm{b}=65-40.5$
$\Rightarrow \mathrm{b}=24.5$
$\therefore \mathrm{a}=0.9, \mathrm{~b}=24.5$
$\therefore \mathrm{y}=0.9 \mathrm{x}+24.5$
(iii) Given $x=40, y=$?
$\therefore(4) \rightarrow y=0.9(40)+24.5$
$\Rightarrow y=36+24.5$
$\Rightarrow y=60.5$ inches
(iv) Given $\mathrm{y}=53.3$ inches, $\mathrm{x}=$?
(4) $\rightarrow 53.3=0.9 x+24.5$
$\Rightarrow 53.3-24.5=0.9 x$
$\Rightarrow 28.8=0.9 \mathrm{x}$
$\Rightarrow \mathrm{x}=\frac{28.8}{0.9}=32 \mathrm{~cm}$
\therefore When $\mathrm{y}=53.3$ inches, $\mathrm{x}=32 \mathrm{~cm}$

Ex 1.4

Question 1.

Determine whether the graph given below represent functions. Give reason for your answers concerning each graph.
(i)

(ii)

(iii)

Solution:
(1)

(i) It is not a function. The graph meets the vertical line at more than one points.
(ii) It is a function as the curve meets the vertical line at only one point.
(iii) It is not a function as it meets the vertical line at more than one points.
(iv) It is a function as it meets the vertical line at only one point.

Question 2.

Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be a function defined by $\mathrm{f}(\mathrm{x})=\frac{x}{2}-1$, Where $\mathrm{A}=\{2,4,6,10,12\}$, $B=\{0,1,2,4,5,9\}$. Represent f by
(i) set of ordered pairs;
(ii) a table;
(iii) an arrow diagram;
(iv) a graph

Solution:
$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$
$\mathrm{A}=\{2,4,6,10,12\}, \mathrm{B}=\{0,1,2,4,5,9\}$

$$
\begin{aligned}
& f(x)=\frac{x}{2}-1 \\
& f(2)=\frac{2}{2}-1=0 \\
& f(4)=\frac{4}{2}-1=1 \\
& f(6)=\frac{6}{2}-1=2 \\
& f(10)=\frac{10}{2}-1=4 \\
& f(12)=\frac{12}{2}-1=5
\end{aligned}
$$

(i) Set of ordered pairs
$=\{(2,0),(4,1),(6,2),(10,4),(12,5)\}$
(ii) a table

x	2	4	6	10	12
$f(x)$	0	1	2	4	5.

(iii) an arrow diagram;

(iv) a graph

Question 3.

Represent the function $\mathrm{f}=\{(1,2),(2,2),(3,2),(4,3),(5,4)\}$ through
(i) an arrow diagram
(ii) a table form
(iii) a graph

Solution:
$\mathrm{f}=\{(1,2),(2,2),(3,2),(4,3),(5,4)\}$
(i) An arrow diagram.

(ii) a table form

x	1	2	3	4	5
$f(x)$	2	2	2	3	4

(iii) A graph representation.

Question 4.

Show that the function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined by $\mathrm{f}\{\mathrm{x})=2 \mathrm{x}-1$ is one - one but not onto.
Solution:
f: $\mathrm{N} \rightarrow \mathrm{N}$
$\mathrm{f}(\mathrm{x})=2 \mathrm{x}-1$
$\mathrm{N}=\{1,2,3,4,5, \ldots\}$
$\mathrm{f}(1)=2(1)-1=1$
$f(2)=2(2)-1=3$
$f(3)=2(3)-1=5$
$f(4)=2(4)-1=7$
$f(5)=2(5)-1=9$

In the figure, for different elements in x, there are different images in $f(x)$.
Hence $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is a one-one function.
A function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is said to be onto function if the range of f is equal to the co-domain of f Range $=\{1,3,5,7,9, \ldots\}$
Co-domain = $\{1,2,3, .$.
But here the range is not equal to co-domain. Therefore it is one-one but not onto function.

Question 5.

Show that the function $f: N \rightarrow N$ defined by $f(m)=m^{2}+m+3$ is one - one function.
Solution:
$\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$
$\mathrm{f}(\mathrm{m})=\mathrm{m}^{2}+\mathrm{m}+3$
$\mathrm{N}=\{1,2,3,4,5 \ldots\} .\mathrm{m} \in \mathrm{N}$
$\mathrm{f}\{\mathrm{m})=\mathrm{m}^{2}+\mathrm{m}+3$
$\mathrm{f}(1)=1^{2}+1+3=5$
$f(2)=2^{2}+2+3=9$
$f(3)=3^{2}+3+3=15$
$f(4)=4^{2}+4+3=23$

In the figure, for different elements in the (X) domain, there are different images in $f(x)$. Hence $f: N$ $\rightarrow \mathrm{N}$ is a one to one but not onto function as the range of f is not equal to co-domain.
Hence it is proved.

Question 6.

Let $A=\{1,2,3,4\}$ and $B=N$.
Let $f: A \rightarrow B$ be defined by $f(x)=x^{3}$ then,
(i) find the range of f
(ii) identify the type of function

Answer:
$A=\{1,2,3,4\}$
$B=\{1,2,3,4,5, \ldots\}$
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$
$f(1)=1^{3}=1$
$f(2)=2^{3}=8$
$f(3)=3^{3}=27$
$f(4)=4^{3}=64$
(i) Range $=\{1,8,27,64\}$
(ii) one -one and into function.

Question 7.

In each of the following cases state whether the function is bijective or not. Justify your answer.
(i) $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$
(ii) $f: R \rightarrow R$ defined by $f(x)=3-4 x^{2}$

Solution:
(i) f: $R \rightarrow R$
$f(x)=2 x+1$
$f(1)=2(1)+1=3$
$\mathrm{f}(2)=2(2)+1=5$
$f(-1)=2(-1)+1=-1$
$\mathrm{f}(0)=2(0)+1=1$
It is a bijective function. Distinct elements of A have distinct images in B and every element in B has a pre-image in A.
(ii) $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$; $\mathrm{f}(\mathrm{x})=3-4 \mathrm{x}^{2}$
$f(1)=3-4\left(1^{2}\right)=3-4=-1$
$f(2)=3-4\left(2^{2}\right)=3-16=-13$
$f(-1)=3-4(-1)^{2}=3-4=-1$
It is not bijective function since it is not one-one

Question 8.

Let $A=\{-1,1\}$ and $B=\{0,2\}$. If the function $f: A \rightarrow B$ defined by $f(x)=a x+b$ is an onto function? Find a and b .
Solution:
$A=\{-1,1\}, B=\{0,2\}$
$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$
$f(-1)=a(-1)+b=-a+b$
$\mathrm{f}(1)=\mathrm{a}(1)+\mathrm{b}=\mathrm{a}+\mathrm{b}$
Since $f(x)$ is onto, $f(-1)=0$
$\Rightarrow-a+b=0 \ldots$ (1)
$\& f(1)=2$
$\Rightarrow \mathrm{a}+\mathrm{b}=2$
$-a+b=0$

$$
\begin{aligned}
a+b & =2 \\
\hline 2 b & =2 \\
b & =1
\end{aligned}
$$

$\therefore(2) \Rightarrow a+1=2$

$$
a=2-1
$$

$$
a=1
$$

$$
\therefore \quad a=1, b=1
$$

Question 9.

If the function f is defined by

$$
f(x)=\left[\begin{array}{ccc}
x+2 & \text { if } & x>1 \\
2 & \text { if } & -1 \leq x \leq 1 \\
x-1 & \text { if } & -3<x<-1
\end{array}\right. \text { find the values of }
$$

(i) $f(3)$
(ii) $f(0)$
(iii) $f(-1.5)$
(iv) $f(2)+f(-2)$

Solution:
(i) $\mathrm{f}(3) \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{x}+2 \Rightarrow 3+2=5$
(ii) $\mathrm{f}(0) \Rightarrow 2$
(iii) $f(-1.5)=x-1$
$=-1.5-1=-2.5$
(iv) $\mathrm{f}(2)+\mathrm{f}(-2)$
$\mathrm{f}(2)=2+2=4 \quad[\because \mathrm{f}(\mathrm{x})=\mathrm{x}+2]$
$f(-2)=-2-1=-3 \quad[\because f(x)=x-1]$
$f(2)+f(-2)=4-3=1$

Question 10.

A function $\mathrm{f}:[-5,9] \rightarrow \mathrm{R}$ is defined as follows:

$$
f(x)=\left[\begin{array}{l}
6 x+1 \text { if }-5 \leq x<2 \\
5 x^{2}-1 \text { if } 2 \leq x<6 \\
3 x-4 \text { if } 6 \leq x \leq 9
\end{array}\right.
$$

Find (i) $f(-3)+f(2)$
(ii) $f(7)-f(1)$
(iii) $2 f(4)+f(8)$
(iv) $\frac{2 f(-2)-f(6)}{f(4)+f(-2)}$

Solution:
$\mathrm{f}:[-5,9] \rightarrow \mathrm{R}$
(i) $f(-3)+f(2)$
$\mathrm{f}(-3)=6 \mathrm{x}+1=6(-3)+1=-17$
$\mathrm{f}(2)=5 \times 2-1=5\left(2^{2}\right)-1=19$
$\therefore \mathrm{f}(-3)+\mathrm{f}(2)=-17+19=2$
(ii) $f(7)-f(1)$
$f(7)=3 x-4=3(7)-4=17$
$f(1)=6 x+1=6(1)+1=7$
$\mathrm{f}(7)-\mathrm{f}(1)=17-7=10$
(iii) $2 \mathrm{f}(4)+\mathrm{f}(8)$
$f(4)=5 x^{2}-1=5 \times 4^{2}-1=79$
$\mathrm{f}(8)=3 \mathrm{x}-4=3 \times 8-4=20$
$\therefore 2 \mathrm{f}(4)+\mathrm{f}(8)=2 \times 79+20=178$
(iv) $\frac{2 f(-2)-f(6)}{f(4)+f(-2)}$

$$
\begin{aligned}
f(-2) & =6 x+1=6(-2)+1=-11 \\
f(6) & =3 x-4=3(6)-4=14 \\
f(4) & =5 x^{2}-1=5\left(4^{2}\right)-1=79 \\
f(-2) & =6 x+1=6(-2)+1=-11 \\
\frac{2 f(-2)-f(6)}{f(4)+f(-2)} & =\frac{2(-11)-14}{79+(-11)}=\frac{-22-14}{68} \\
& =\frac{-36}{68}=\frac{-9}{17}
\end{aligned}
$$

Question 11

The distance S an object travels under the influence of gravity in time t seconds is 12 given by $\mathrm{S}(\mathrm{t})$ $=\frac{1}{3} \mathrm{gt}^{2}+\mathrm{at}+\mathrm{b}$, where, (g is the acceleration due to gravity), a, b are constants. Check if the function $\mathrm{S}(\mathrm{t})$ is one-one.
Answer:
$\mathrm{S}(\mathrm{t})=\frac{1}{2} \mathrm{gt}^{2}+\mathrm{at}+\mathrm{b}$
Let the time be $1,2,3 \ldots \mathrm{n}$ seconds
$\mathrm{S}(1)=\frac{1}{2} \mathrm{~g}(1)^{2}+\mathrm{a}(1)+\mathrm{b}$
$=\frac{g}{2}+\mathrm{a}+\mathrm{b}$
$\mathrm{S}(2)=\frac{1}{2} \mathrm{~g}(2)^{2}+\mathrm{a}(2)+\mathrm{b}$
$=\frac{4 g}{2}+2 \mathrm{a}+\mathrm{b}$
$=2 \mathrm{~g}+2 \mathrm{a}+\mathrm{b}$
$\mathrm{S}(3)=\frac{1}{2} \mathrm{~g}(3)^{2}+\mathrm{a}(3)+6$
$=\frac{9}{2} \mathrm{~g}+3 \mathrm{a}+\mathrm{b}$
For every different value of t, there will be different distance.
\therefore It is a one-one function.

Question 12.

The function ' t ' which maps temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by $\mathrm{t}(\mathrm{C})=\mathrm{F}$ where $\mathrm{F}=\frac{9}{5} \mathrm{C}+32$. Find,
(i) $\mathrm{t}(0)$
(ii) $\mathrm{t}(28)$
(iii) $t(-10)$
(iv) the value of C when $\mathrm{t}(\mathrm{C})=212$
(v) the temperature when the Celsius value is equal to the Farenheit value.

Solution:
(i)

$$
\begin{aligned}
t(0) & =\mathrm{F} \\
\mathrm{~F} & =\frac{9}{5}(\mathrm{C})+32=\frac{9}{5}(0)+32=32^{\circ} \mathrm{F}
\end{aligned}
$$

$$
\begin{align*}
t(28) & =\mathrm{F}=\frac{9}{5}(28)+32=\frac{252}{5}+32 \tag{ii}\\
& =50.4+32=82.4^{\circ} \mathrm{F}
\end{align*}
$$

(iii) $t(-10)=\mathrm{F}=\frac{9}{5}(-10)+32=14^{\circ} \mathrm{F}$
(iv) $\quad t(\mathrm{C})=212$
i.e $\frac{9}{5}(\mathrm{C})+32=212 \Rightarrow \frac{9}{5} \mathrm{C}=212-32=180$

$$
\begin{aligned}
\frac{9}{5} \mathrm{C} & =180 \Rightarrow \mathrm{C}=\frac{180 \times 5}{9}=100^{\circ} \mathrm{C} \\
\mathrm{C} & =100^{\circ} \mathrm{C} .
\end{aligned}
$$

(v) when $\mathrm{C}=\mathrm{F}$

$$
\begin{aligned}
\frac{9}{5} \mathrm{C}+32 & =\mathrm{C} \\
32 & =\mathrm{C}-\frac{9}{5} \mathrm{C} \\
32 & =\mathrm{C}\left(1-\frac{9}{5}\right) \\
32 & =\mathrm{C}\left(\frac{5-9}{5}\right) \\
32 & =\mathrm{C}\left(\frac{-4}{5}\right) \\
\mathrm{C} & =\not 22 \times \frac{-5}{\not 4} \\
\mathrm{C} & =-40^{\circ}
\end{aligned}
$$

Ex 1.5

Question 1

Using the functions f and g given below, find fog and gof. Check whether fog $=$ gof.
(i) $f(x)=x-6, g(x)=x^{2}$
(ii) $\mathrm{f}(\mathrm{x})=\frac{2}{x}, \mathrm{~g}(\mathrm{x})=2 \mathrm{x}^{2}-1$
(iii) $\mathrm{f}(\mathrm{x})=\frac{x+6}{3} \mathrm{~g}(\mathrm{x})=3-\mathrm{x}$
(iv) $f(x)=3+x, g(x)=x-4$
(v) $f(x)=4 x^{2}-1, g(x)=1+x$

Solution:
(i) $f(x)=x-6, g(x)=x^{2}$
fog $(x)=f(g(x))=f\left(x^{2}\right)=x^{2}-6$
$\operatorname{gof}(x)=g(f(x))=g(x-6)=(x-6)^{2}$
$=x^{2}+36-12 x=x^{2}-12 x+36$
(1) $\neq(2)$
\therefore fog $(\mathrm{x}) \neq \operatorname{gof}(\mathrm{x})$
(ii) $f(x)=\frac{2}{x}, g(x)=2 x^{2}-1$

$$
f \circ g(x)=f(g(x))=f\left(2 x^{2}-1\right)=\frac{2}{2 x^{2}-1}
$$

$$
\begin{align*}
g \circ f(x) & =g(f(x))=g\left(\frac{2}{x}\right)=2\left(\frac{2}{x}\right)^{2}-1 \tag{1}\\
& =2\left(\frac{4}{x^{2}}\right)-1=\frac{8}{x^{2}}-1 \tag{2}
\end{align*}
$$

(iii) $\mathrm{f}(\mathrm{x})=\frac{x+6}{3} \mathrm{~g}(\mathrm{x})=3-\mathrm{x}$

$$
\begin{aligned}
f \circ g(x) & =f(g(x))=f(3-x)=\frac{3-x+6}{3} \\
& =\frac{9-x}{3}
\end{aligned}
$$

$$
g \circ f(x)=g(f(x))=g\left(\frac{x+6}{3}\right)=3-\frac{x+6}{3}
$$

$$
\begin{equation*}
=\frac{9-x-6}{3}=\frac{3-x}{3} . \tag{2}
\end{equation*}
$$

(1) $\neq(2)$

$$
f \circ g(x) \neq g \circ f(x)
$$

(iv) $f(x)=3+x, g(x)=x-4$
$f \circ g(x)=f(g(x))=f(x-4)=3+x-4$
$=x-1 \ldots \ldots \ldots .$. (1)
$\operatorname{gof}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{g}(3+\mathrm{x})=3+\mathrm{x}-4$
$=\mathrm{x}-1$
Here fog $(x)=\operatorname{gof}(x)$
(v) $f(x)=4 x^{2}-1, g(x)=1+x$
$f \circ g(x)=f(g(x))=f(1+x)=4(1+x)^{2}-1$
$=4\left(1+x^{2}+2 x\right)-1=4+4 x^{2}+8 x-1$
$=4 x^{2}+8 x+3$

$$
\begin{aligned}
& \operatorname{gof}(x)=g(f(x))=g\left(4 x^{2}-1\right) \\
& =1+4 x^{2}-1=4 x^{2} \ldots \ldots \ldots \ldots \\
& (1) \neq(2) \\
& \therefore \operatorname{fog}(x) \neq \operatorname{gof}(x)
\end{aligned}
$$

Question 2.

Find the value of k, such that $\mathrm{fog}=\mathrm{g}$ of
(i) $f(x)=3 x+2, g(x)=6 x-k$

Answer:
$f(x)=3 x+2 ; g(x)=6 x-k$
fog $=\mathrm{f}[\mathrm{g}(\mathrm{x})]$
$=\mathrm{f}(6 \mathrm{x}-\mathrm{k})$
$=3(6 x-k)+2$
$=18 \mathrm{x}-3 \mathrm{~K}+2$
$\mathrm{g} 0 \mathrm{f}=\mathrm{g}[\mathrm{f}(\mathrm{x})]$
$=g(3 x+2)$
$=6(3 \mathrm{x}+2)-\mathrm{k}$
$=18 \mathrm{x}+12-\mathrm{k}$
But given fog $=$ gof.
$18 \mathrm{x}-3 \mathrm{x}+2=18 \mathrm{x}+12-\mathrm{k}$
$-3 \mathrm{k}+2=12-\mathrm{k}$
$-3 \mathrm{k}+\mathrm{k}=12-2$
$-2 \mathrm{k}=10$
$\mathrm{k}=\frac{-10}{2}=-5$
The value of $\mathrm{k}=-5$
(ii) $f(x)=2 x-k, g(x)=4 x+5$

Answer:
$\mathrm{f}(\mathrm{x})=2 \mathrm{x}-\mathrm{k} ; \mathrm{g}(\mathrm{x})=4 \mathrm{x}+5$
fog $=f[g(x)]$
$=f(4 \mathrm{x}+5)$
$=2(4 \mathrm{x}+5)-\mathrm{k}$
$=8 \mathrm{x}+10-\mathrm{k}$
gof $=\mathrm{g}[\mathrm{f}(\mathrm{x})]$
$=\mathrm{g}(2 \mathrm{x}-\mathrm{k})$
$=4(2 x-k)+5$
$=8 \mathrm{x}-4 \mathrm{k}+5$
But fog $=$ gof
$8 \mathrm{x}+10-\mathrm{k}=8 \mathrm{x}-4 \mathrm{k}+5$
$-k+4 k=5-10$
$3 \mathrm{k}=-5$
$\mathrm{k}=\frac{-5}{3}$
The value of $\mathrm{k}=\frac{-5}{3}$

Question 3.

if $f(x)=2 x-1, g(x)=\frac{x+1}{2}$, show that fog $=$ gof $=x$
Solution:

$$
\begin{align*}
& f(\mathrm{x})=2 \mathrm{x}-1, \mathrm{~g}(\mathrm{x})=\frac{x+1}{2}, \mathrm{fog}=\mathrm{gof}=\mathrm{x} \\
& \begin{aligned}
& f(x)=2 x-1, g(x)=\frac{x+1}{2}, f \circ g=g \circ f=x \\
& f \circ g(x)=f(g(x))=f\left(\frac{x+1}{2}\right) \\
&=\not 2\left(\frac{x+1}{2}\right)-1=x \\
& g \circ f(x)=g(f(x))=g(2 x-1)=\frac{2 x-1+1}{2} \\
&=\frac{2 x}{2}=x
\end{aligned}
\end{align*}
$$

$(1)=(2)$

$$
f \circ g=g \circ f=x
$$

Hence proved.

Question 4.

(i) If $f(x)=x^{2}-1, g(x)=x-2$ find a, if g o $f(a)=1$.
(a) Find k, if $f(k)=2 k-1$ and
fof $(k)=5$.
Answer:
(i) $f(x)=x^{2}-1 ; g(x)=x-2$.
gof $=g[f(x)]$
$=g\left(x^{2}-1\right)$
$=x^{2}-1-2$
$=x^{2}-3$
given $\operatorname{gof}(a)=1$
$a^{2}-3=1\left[\right.$ But go $\left.f(x)=x^{2}-3\right]$
$\mathrm{a}^{2}=4$
$\mathrm{a}=\sqrt{4}= \pm 2$
The value of $\mathrm{a}= \pm 2$
(ii) $f(k)=2 k-1 ; \operatorname{fof}(k)=5$
fof $=f[f(k)]$
$=\mathrm{f}(2 \mathrm{k}-1)$
$=2(2 \mathrm{k}-1)-1$
$=4 \mathrm{k}-2-1$
$=4 \mathrm{k}-3$
fof $(k)=5$
$4 \mathrm{k}-3=5$
$4 \mathrm{k}=5+3$
$4 \mathrm{k}=8$
$\mathrm{k}=\frac{8}{4}=2$
The value of $k=2$

Question 5.

Let $A, B, C \subset N$ and a function $f: A \rightarrow B$ be defined by $f(x)=2 x+1$ and $g: B \rightarrow C$ be defined by $g(x)=x^{2}$. Find the range of fog and gof
Solution:
$f(x)=2 x+1$
$g(x)=x^{2}$
$f \circ g(x)=f g(x))=f\left(x^{2}\right)=2 x^{2}+1$
$\operatorname{gof}(x)=g(f(x))=g(2 x+1)=(2 x+1)^{2}$
$=4 x^{2}+4 x+1$
Range of fog is
$\left\{y / y=2 x^{2}+1, x \in N\right\}$
Range of gof is
$\left\{y / y=(2 x+1)^{2}, x \in N\right\}$.

Question 6.

Let $f(x)=x^{2}-1$. Find (i) fof (ii) fofof
Answer:
$f(x)=x^{2}-1$
(i) $\operatorname{fof}=\mathrm{f}[\mathrm{f}\{\mathrm{x})]$
$=f\left(x^{2}-1\right)$
$=\left(x^{2}-1\right)^{2}-1$
$=x^{4}-2 x^{2}+1-1$
$=x^{4}-2 x^{2}$
(ii) $\operatorname{fofof}=\operatorname{fof}[f(x)]$
$=\operatorname{fof}\left(x^{2}-1\right)$
$=f\left(x^{2}-1\right)^{2}-1$
$=f\left(x^{4}-2 x^{2}+1-1\right)$
$=f\left(x^{4}-2 x^{2}\right)$
fofof $=\left(x^{4}-2 x^{2}\right)^{2}-1$

Question 7.

If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=x^{5}$ and $g(x)=x^{4}$ then check if f, g are one-one and fog is one-one?
Solution:
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{5}$
$g(x)=x^{4}$
$\mathrm{fog}=\mathrm{fog}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}\left(\mathrm{x}^{4}\right)$
$=\left(x^{4}\right)^{5}=x^{20}$
f is one-one, g is not one-one.
$\because g(1)=1^{4}=1$
$g(-1)=(-1)^{4}=1$
Different elements have same images
fog is not one-one. [\because fog $(1)=\mathrm{fog}(-1)=1$]

Question 8.

Consider the functions $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{h}(\mathrm{x})$ as given below. Show that
($f \circ \mathrm{~g}$) oh $=\mathrm{f} \circ(\mathrm{g} \circ \mathrm{oh})$ in each case.
(i) $f(x)=x-1, g(x)=3 x+1$ and $h(x)=x^{2}$
(ii) $f(x)=x^{2}, g(x)=2 x$ and $h(x)=x+4$
(iii) $f(x)=x-4, g(x)=x^{2}$ and $h(x)=3 x-5$

Answer:
(i) $f(x)=x-1, g(x)=3 x+1, h(x)=x^{2}$
fog $(x)=f[g(x)]$
$=\mathrm{f}(3 \mathrm{x}+1)$
$=3 \mathrm{x}+1-1$
fog $=3 x$
$(f \circ g)$ o $h(x)=$ fog $[h(x)]$,
$=f o g\left(x^{2}\right)$
$=3\left(\mathrm{x}^{2}\right)$
$(f o g)$ oh $=3 x^{2}$
$\operatorname{goh}(\mathrm{x})=\mathrm{g}[\mathrm{h}(\mathrm{x})]$
$=\mathrm{g}\left(\mathrm{x}^{2}\right)$
$=3\left(\mathrm{x}^{2}\right)+1$
$=3 x^{2}+1$
fo $(\operatorname{goh}) x=f[\operatorname{goh}(x)]$
$=\mathrm{f}\left[3 \mathrm{x}^{2}+1\right]$
$=3 \mathrm{x}^{2}+1-1$
$=3 x^{2} \ldots$.(2)
From (1) and (2) we get
(fog) oh = fo (goh)
Hence it is verified
(ii) $f(x)=x^{2} ; g(x)=2 x$ and $h(x)=x+4$
(fog) $x=f[g(x)]$
$=\mathrm{f}(2 \mathrm{x})$
$=(2 \mathrm{x})^{2}$
$=4 \mathrm{x}^{2}$
$(f o g)$ oh $(x)=$ fog $[h(x)]$
$=f o g(x+4)$
$=4(x+4)^{2}$
$=4\left[x^{2}+8 x+16\right]$
$=4 x^{2}+32 x+64 \ldots$ (1)
$\operatorname{goh}(\mathrm{x})=\mathrm{g}[\mathrm{h}(\mathrm{x})]$
$=g(x+4)$
$=2(x+4)$
$=2 \mathrm{x}+8$
fo(goh) $x=$ fo $[\operatorname{goh}(x)]$
$=\mathrm{f}[2 \mathrm{x}+8]$
$=(2 \mathrm{x}+8)^{2}$
$=4 \times 2+32 \mathrm{x}+64 \ldots$.
From (1) and (2) we get
$(f o g)$ oh $=$ fo(goh)
(iii) $f(x)=x-4 ; g(x)=x^{2} ; h(x)=3 x-5$
fog $(x)=f[g(x)]$
$=f\left(x^{2}\right)$
$=x^{2}-4$
$(f \circ g)$ oh $(x)=$ fog $[h(x)]$
$=f o g(3 x-5)$
$=(3 x-5)^{2}-4$
$=9 \mathrm{x}^{2}-30 \mathrm{x}+25-4$
$=9 x^{2}-30 x+21$
$\operatorname{goh}(\mathrm{x})=\mathrm{g}[\mathrm{h}(\mathrm{x})]$
$=g(3 x-5)$
$=(3 \mathrm{x}-5)^{2}$
$=9 \mathrm{x}^{2}+25-30 \mathrm{x}$
fo $(\operatorname{goh}) x=\mathrm{f}[\operatorname{goh}(\mathrm{x})]$
$=\mathrm{f}\left[9 \mathrm{x}^{2}-30 \mathrm{x}+25\right]$
$=9 x^{2}-30 x+25-4$
$=9 x^{2}-30 \mathrm{x}+21 \ldots$.(2)
From (1) and (2) we get
(fog) $\mathrm{oh}=\mathrm{fo}(\mathrm{goh})$

Question 9.

Let $\mathrm{f}=\{(-1,3),(0,-1),(2,-9)\}$ be a linear function from Z into Z . Find $\mathrm{f}(\mathrm{x})$.
Solution:
$f=\{(-1,3),(0,-1), 2,-9)$
$\mathrm{f}(\mathrm{x})=(\mathrm{ax})+\mathrm{b}$ \qquad
is the equation of all linear functions.
$\therefore \mathrm{f}(-1)=3$
$f(0)=-1$
$f(2)=-9$
$f(x)=a x+b$
$f(-1)=-a+b=3$
$f(0)=b=-1$
$-\mathrm{a}-1=3[\because$ substituting $\mathrm{b}=-1$ in (2)]
$-\mathrm{a}=4$
$a=-4$
The linear function is $-4 \mathrm{x}-1$. [From (1)]

Question 10.

In electrical circuit theory, a circuit $C(t)$ is called a linear circuit if it satisfies the superposition principle given by $C\left(\mathrm{at}_{1}+\mathrm{bt}_{2}\right)=\mathrm{aC}\left(\mathrm{t}_{1}\right)+\mathrm{bC}\left(\mathrm{t}_{2}\right)$, where a , b are constants. Show that the circuit $\mathrm{C}(\mathrm{t})=31$ is linear.
Answer:
Given $C(t)=3 t$
$C\left(\mathrm{at}_{1}\right)=3 \mathrm{at}_{1} \ldots$ (1)
$C\left(\mathrm{bt}_{2}\right)=3 \mathrm{bt}_{2} \ldots$ (2)
Add (1) and (2)
$\mathrm{C}\left(\mathrm{at}_{1}\right)+\mathrm{C}\left(\mathrm{bt}_{2}\right)=3 \mathrm{at}_{1}+3 \mathrm{bt}_{2}$
$C\left(a t_{1}+b t_{2}\right)=3 a t_{1}+3 b t_{2}$
$=\mathrm{Cat}_{1}+\mathrm{Cbt}_{2}[$ from (1) and (2)]
$\therefore \mathrm{C}\left(\mathrm{at}_{1}+\mathrm{bt}_{2}\right)=\mathrm{C}\left(\mathrm{at}_{1}+\mathrm{bt}_{2}\right)$

Superposition principle is satisfied.
$\therefore \mathrm{C}(\mathrm{t})=3 \mathrm{t}$ is a linear function.

Ex 1.6

Question 1.
If $\mathrm{n}(\mathrm{A} \times \mathrm{B})=6$ and $\mathrm{A}=\{1,3\}$ then $\mathrm{n}(\mathrm{B})$ is
(1) 1
(2) 2
(3) 3
(4) 6

Answer:
(3) 3

Hint:
If $\mathrm{n}(\mathrm{A} \times \mathrm{B})=6$
$\mathrm{A}=\{1,1\}, \mathrm{n}(\mathrm{A})=2$
$\mathrm{n}(\mathrm{B})=3$
Question 2.
$A=\{a, b, p\}, B=\{2,3\}, C=\{p, q, r, s)$
then $n[(A \cup C) \times B]$ is $\ldots \ldots \ldots \ldots$
(1) 8
(2) 20
(3) 12
(4) 16

Answer:
(3) 12

Hint: $\mathrm{A} \cup \mathrm{C}=[\mathrm{a}, \mathrm{b}, \mathrm{p}] \cup[\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}]$
$=[\mathrm{a}, \mathrm{b}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}]$
$n(A \cup C)=6$
$\mathrm{n}(\mathrm{B})=2$
$\therefore \mathrm{n}[(\mathrm{A} \cup \mathrm{C})] \times \mathrm{B}]=6 \times 2=12$

Question 3.
If $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$ then state which of the following statement is true.
(1) $(\mathrm{A} \times \mathrm{C}) \subset(\mathrm{B} \times \mathrm{D})$
(2) $(\mathrm{B} \times \mathrm{D}) \subset(\mathrm{A} \times \mathrm{C})$
(3) $(\mathrm{A} \times \mathrm{B}) \subset(\mathrm{A} \times \mathrm{D})$
(4) $(\mathrm{D} \times \mathrm{A}) \subset(\mathrm{B} \times \mathrm{A})$

Answer:
(1) $(\mathrm{A} \times \mathrm{C}) \subset(\mathrm{B} \times \mathrm{D})]$

Hint:
$\mathrm{A}=\{1,2\}, \mathrm{B}=\{1,2,3,4\}$,
$\mathrm{C}=\{5,6\}, \mathrm{D}=\{5,6,7,8\}$
$\mathrm{A} \times \mathrm{C}=\{(1,5),(1,6),(2,5),(2,6)\}$
$\mathrm{B} \times \mathrm{D}=\{(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8)\}$
$\therefore(\mathrm{A} \times \mathrm{C}) \subset \mathrm{B} \times \mathrm{D}$ it is true
Question 4.
If there are 1024 relations from a set $\mathrm{A}=\{1,2,3,4,5\}$ to a set B , then the number of elements in B is
(1) 3
(2) 2
(3) 4
(4) 8

Answer:
(2) 2

Hint: $\mathrm{n}(\mathrm{A})=5$
$\mathrm{n}(\mathrm{A} \times \mathrm{B})=10$
(consider 1024 as 10)
$\mathrm{n}(\mathrm{A}) \times \mathrm{n}(\mathrm{B})=10$
$5 \times \mathrm{n}(\mathrm{B})=10$
$\mathrm{n}(\mathrm{B})=\frac{10}{5}=2$
$\mathrm{n}(\mathrm{B})=2$
Question 5.
The range of the relation $\mathrm{R}=\left\{\left(\mathrm{x}, \mathrm{x}^{2}\right) \mid \mathrm{x}\right.$ is a prime number less than 13$\}$ is
(1) $\{2,3,5,7\}$
(2) $\{2,3,5,7,11\}$
(3) $\{4,9,25,49,121\}$
(4) $\{1,4,9,25,49,121\}$

Answer:
(3) $\{4,9,25,49,121\}]$

Hint:
$\mathrm{R}=\left\{\left(\mathrm{x}, \mathrm{x}^{2}\right) / \mathrm{x}\right.$ is a prime number $\left.<13\right\}$
The squares of $2,3,5,7,11$ are
$\{4,9,25,49,121\}$

Question 6.
If the ordered pairs $(a+2,4)$ and $(5,2 a+6)$ are equal then (a, b) is $\ldots \ldots \ldots$.
(1) $(2,-2)$
(2) $(5,1)$
(3) $(2,3)$
(4) $(3,-2)$

Answer:
(4) $(3,-2)$

Hint:

$$
\begin{array}{c|l}
a+2=5 & 4=2 a+b \\
a=5-2 & 4=2(3)+b \\
a=3 & 4-6=b \\
& -2=b
\end{array}
$$

The value of $a=3$ and $b=-2$
Question 7.
Let $n(A)=m$ and $n(B)=n$ then the total number of non-empty relations that can be defined from A to B is
(1) m^{n}
(2) n^{m}
(3) $2^{\mathrm{mn}}-1$
(4) 2^{mn}

Answer:
(4) 2^{mn}

Hint:
$\mathrm{n}(\mathrm{A})=\mathrm{m}, \mathrm{n}(\mathrm{B})=\mathrm{n}$
$\mathrm{n}(\mathrm{A} \times \mathrm{B})=2^{\mathrm{mn}}$
Question 8.
If $\{(a, 8),(6, b)\}$ represents an identity function, then the value of a and 6 are respectively
(1) $(8,6)$
(2) $(8,8)$
(3) $(6,8)$
(4) $(6,6)$

Answer:
(1) $(8,6)$

Hint: $\mathrm{f}=\{\{\mathrm{a}, 8)(6,6)\}$. In an identity function each one is the image of it self.
$\therefore \mathrm{a}=8, \mathrm{~b}=6$
Question 9.
Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{4,8,9,10\}$. A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ given by $\mathrm{f}=\{(1,4),(2,8),(3,9),(4$, 10) $\}$ is a
(1) Many-one function
(2) Identity function
(3) One-to-one function
(4) Into function

Answer:
(3) One-to one function

Hint:
$A=\{1,2,3,4), B=\{4,8,9,10\}$

Question 10.
If $f(x)=2 x^{2}$ and $g(x)=\frac{1}{3 x}$, Then fog is
(1) $\frac{3}{2 x^{2}}$
(2) $\frac{2}{3 x^{2}}$
(3) $\frac{2}{9 x^{2}}$
(4) $\frac{1}{6 x^{2}}$

Answer:
(3) $\frac{2}{9 x^{2}}$

Hint:
$\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}$
$\mathrm{g}(\mathrm{x})=\frac{1}{3 x}$
fog $=\mathrm{f}(\mathrm{g}(\mathrm{x}))=f\left(\frac{1}{3 x}\right)=2\left(\frac{1}{3 x}\right)^{2}$
$=2 \times \frac{1}{9 x^{2}}=\frac{2}{9 x^{2}}$

Queston 11.
If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a bijective function and if $\mathrm{n}(\mathrm{B})=7$, then $\mathrm{n}(\mathrm{A})$ is equal to \qquad
(1) 7
(2) 49
(3) 1
(4) 14

Answer:
(1) 7

Hint:
$\mathrm{n}(\mathrm{B})=7$
Since it is a bijective function, the function is one - one and also it is onto.
$n(A)=n(B)$
$\therefore \mathrm{n}(\mathrm{A})=7$
Question 12.
Let f and g be two functions given by $\mathrm{f}=\{(0,1),(2,0),(3,-4),(4,2),(5,7)\} \mathrm{g}=\{(0,2),(1,0),(2$,
4), $(-4,2),(7,0)\}$ then the range of fog is
(1) $\{0,2,3,4,5\}$
(2) $\{-4,1,0,2,7\}$
(3) $\{1,2,3,4,5\}$
(4) $\{0,1,2\}$

Answer:
(4) $\{0,1,2\}$

Hint:
gof $=\mathrm{g}(\mathrm{f}(\mathrm{x}))$
fog $=\mathrm{f}(\mathrm{g}(\mathrm{x}))$
$=\{(0,2),(1,0),(2,4),(-4,2),(7,0)\}$
Range of fog $=\{0,1,2\}$
Question 13.
Let $\mathrm{f}(\mathrm{x})=\sqrt{1+x^{2}}$ then
(1) $f(x y)=f(x) f(y)$
(2) $f(x y) \geq f(x) . f(y)$
(3) $f(x y) \leq f(x) . f(y)$
(4) None of these

Answer:
(3) $f(x y) \leq f(x) . f(y)$

Question 14.
If $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function given by $g(x)=\alpha x+\beta$ then the values of α and β are (1) $(-1,2)$
(2) $(2,-1)$
(3) $(-1,-2)$
(4) $(1,2)$

Answer:
(2) $(2,-1)$

Hint:
$\mathrm{g}(\mathrm{x})=\alpha \mathrm{x}+\beta$
$\alpha=2$
$\beta=-1$
$\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$
$g(1)=2(1)-1=1$
$g(2)=2(2)-1=3$
$g(3)=2(3)-1=5$
$g(4)=2(4)-1=7$
Question 15.
$f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is \qquad
(1) linear
(2) cubic
(3) reciprocal
(4) quadratic

Answer:
(4) quadratic

Hint: $f(x)=(x+1)^{3}-(x-1)^{3}$
[using $\mathrm{a}^{3}-\mathrm{b}^{3}=(\mathrm{a}-\mathrm{b})^{3}+3 \mathrm{ab}(\mathrm{a}-\mathrm{b})$]
$=(x+1-x+1)^{3}+3(x+1)(x-1)$
$(x+1-x+1)$
$=8+3\left(\mathrm{x}^{2}-1\right)^{2}$
$=8+6\left(\mathrm{x}^{2}-1\right)$
$=8+6 \mathrm{x}^{2}-6$
$=6 x^{2}+2$
It is quadratic polynomial

Unit Exercise 1

Question 1.

If the ordered pairs $\left(x^{2}-3 x, y^{2}+4 y\right)$ and $(-2,5)$ are equal, then find x and y.
Solution:

$$
\begin{aligned}
&\left(\mathrm{x}^{2}-3 \mathrm{x}, \mathrm{y}^{2}+4 \mathrm{y}\right)=(-2,5) \\
& \mathrm{x}^{2}-3 \mathrm{x}=-2 \\
& \mathrm{x}^{2}-3 \mathrm{x}+2=0 \\
&(x-2)(x-1)=0 \\
& x=2,1 \\
& y^{2}+4 y=5 \\
& y^{2}+4 y-5=0 \\
&(y+5)(y-1)=0 \\
& y=-5,1
\end{aligned}
$$

Question 2.

The cartesian product $\mathrm{A} \times \mathrm{A}$ has 9 elements among which $(-1,0)$ and $(0,1)$ are found.
Find the set A and the remaining elements of $\mathrm{A} \times \mathrm{A}$.
Answer:
$\mathrm{n}(\mathrm{A} \times \mathrm{A})=9$
$\mathrm{n}(\mathrm{A})=3$
$\mathrm{A}=\{-1,0,1\}$
$\mathrm{A} \times \mathrm{A}=\{-1,0,1\} \times\{-1,0,1\}$
$A \times A=\{(-1,-1)(-1,0)(-1,1)$
$(0,-1)(0,0)(0,1)$
$(1,-1)(1,0)(1,1)\}$
The remaining elements of $\mathrm{A} \times \mathrm{A}=$
$\{(-1,-1)(-1,1)(0,-1)(0,0)(1,-1)(1,0)(1,1)\}$

Question 3.

Given that
$f(x)=\left\{\begin{array}{cc}\sqrt{x-1} & x \geq 1 \\ 4 & x<1\end{array}\right\}$
(i) $\mathrm{f}(0)$
(ii) $\mathrm{f}(3)$
(iii) $\mathrm{f}(\mathrm{a}+1)$ in terms of a .(Given that $\mathrm{a}>0$)

Solution:
(i) $f(0)=4$
(ii) $\mathrm{f}(3)=\sqrt{3-1}=\sqrt{2}$
(iii) $\mathrm{f}(\mathrm{a}+1)=\sqrt{a+1-1}=\sqrt{a}$

Question 4.

Let $A=\{9,10,11,12,13,14,15,16,17\}$ and let $f: A \rightarrow N$ be defined by $f(n)=$ the highest prime factor of $n \in A$. Write f as a set of ordered pairs and find the range of f.
Answer:
$\mathrm{A}=\{9,10,11,12,13,14,15,16,17\}$
$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{N}$
$\mathrm{f}(\mathrm{x})=$ the highest prime factor $\mathrm{n} \in \mathrm{A}$
$\mathrm{f}=\{(9,3)(10,5)(11,11)(12,3)(13,13)(14,7)(15,5)(16,2)(17,17)\}$
Range of $\mathrm{f}=\{3,5,11,13,7,2,17\}$
$=\{2,3,5,7,11,13,17\}$

Question 5.

Find the domain of the function $\mathrm{f}(\mathrm{x})=\sqrt{1+\sqrt{1-\sqrt{1-x^{2}}}}$
Solution:
$\mathrm{f}(\mathrm{x})=\sqrt{1+\sqrt{1-\sqrt{1-x^{2}}}}$
Domain of $f(x)=\{-1,0,1\}$
($\mathrm{x}^{2}=1,-1,0$, because $\sqrt{1-x^{2}}$ should be +ve , or 0)

Question 6.

If $f(x)=x^{2}, g(x)=3 x$ and $h(x)=x-2$, Prove that (fog$) \mathrm{oh}=\mathrm{fo}(\mathrm{g} \circ \mathrm{h})$.
Answer:
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2} ; \mathrm{g}(\mathrm{x})=3 \mathrm{x}$ and $\mathrm{h}(\mathrm{x})=\mathrm{x}-2$
L.H.S. $=(f o g)$ oh
fog $=f[g(x)]$
$=\mathrm{f}(3 \mathrm{x})$
$=(3 \mathrm{x})^{2}=9 \mathrm{x}^{2}$
$(f o g)$ oh $=f o g[h(x)]$
$=f o g(x-2)$
$=9(x-2)^{2}$
$=9\left[\mathrm{x}^{2}-4 \mathrm{x}+4\right]$
$=9 \mathrm{x}^{2}-36 \mathrm{x}+36$
R.H.S. $=$ fo(goh)
goh $=\mathrm{g}[\mathrm{h}(\mathrm{x})$]
$=g(x-2)$
$=3(\mathrm{x}-2)$
$=3 \mathrm{x}-6$
fo(goh) $=$ fo [goh (x)]
$=f(3 x-6)$
$=(3 x-6)^{2}$
$=9 x^{2}-36 x+36$
From (1) and (2) we get
L.H.S. = R.H.S.
(fog) oh $=$ fo (goh)

Question 7.

$\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{1,2,3,4\}, \mathrm{C}=\{5,6\}$ and $\mathrm{D}=\{5,6,7,8\}$. Verify whether $\mathrm{A} \times \mathrm{C}$ is a subset of $\mathrm{B} \times \mathrm{D}$?
Solution:
$\mathrm{A}=\{1,2), \mathrm{B}=(1,2,3,4)$
$\mathrm{C}=\{5,6\}, \mathrm{D}=\{5,6,7,8)$
$\mathrm{A} \times \mathrm{C}=\{(1,5),(1,6),(2,5),(2,6)\}$
$\mathrm{B} \times \mathrm{D}=\{(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4$, 6), $(4,7),(4,8)\}$
$(\mathrm{A} \times \mathrm{C}) \subset(\mathrm{B} \times \mathrm{D})$ It is proved.

Question 8.

If $\mathrm{f}(\mathrm{x})=\frac{x-1}{x+1}, \mathrm{x} \neq 1$ show that $\mathrm{f}(\mathrm{f}(\mathrm{x}))=-\frac{1}{x}$, Provided $\mathrm{x} \neq 0$.
Solution:

$$
\begin{aligned}
f(x) & =\frac{x-1}{x+1}, x \neq 1 \\
f(f(x)) & =f\left(\frac{x-1}{x+1}\right)=\frac{\left(\frac{x-1}{x+1}\right)-1}{\left(\frac{x-1}{x+1}\right)+1} \\
& =\frac{\frac{x-1-x-1}{(x+1)}}{\frac{x-1+x+1}{(x+1)}}=\frac{-2}{2 x}=\frac{-1}{x}
\end{aligned}
$$

Hence it is proved.
Question 9.
The function/and g are defined by $f(x)=6 x+8 ; g(x)=\frac{x-2}{3}$.
(i) Calculate the value of $g g\left(\frac{1}{2}\right)$
(ii) Write an expression for $\mathrm{g} \mathrm{f}(\mathrm{x})$ in its simplest form.

Solution:

$$
\begin{aligned}
& f(x)=6 x+8 \\
& g(x)=\frac{x-2}{3}
\end{aligned}
$$

(i) $\quad g g(x)=g(g(x))$

$$
\begin{aligned}
& =g\left(\frac{x-2}{3}\right)=\frac{\frac{x-2}{3}-2}{3} \\
& =\frac{x-2-6}{3} \times \frac{1}{3}=\frac{x-8}{9}
\end{aligned}
$$

$$
\operatorname{gog}\left(\frac{1}{2}\right)=\frac{\frac{1}{2}-8}{9}=\frac{1-16}{2} \times \frac{1}{9}
$$

$$
=\frac{-15}{18}=\frac{-5}{6}
$$

(ii) $g o f(x)=g(f(x))=g(6 x+8)$

$$
\begin{aligned}
& =\frac{6 x+8-2}{3}=\frac{6 x+6}{3} \\
& =\frac{\not p(2 x+2)}{\not p} \\
& =2 x+2=2(x+1)
\end{aligned}
$$

Question 10.

Write the domain of the following real functions
(i) $f(x)=\frac{2 x+1}{x-9}$
(ii) $p(x)=\frac{-5}{4 x^{2}+1}$
(iii) $g(x)=\sqrt{x-2}$ (iv) $h(x)=x+6$

Solution:
(i) $\mathrm{f}(\mathrm{x})=\frac{2 x+1}{x-9}$

The denominator should not be zero as the function is a real function.
\therefore The domain $=\mathrm{R}-\{9\}$
(ii) $\mathrm{p}(\mathrm{x})=\frac{-5}{4 x^{2}+1}$

The domain is R .
(iii) $\mathrm{g}(\mathrm{x})=\sqrt{x-2}$

The domain $=[2, \propto)$
(iv) $h(x)=x+6$

The domain is R .

Additional Questions

Question 1.
Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{-1,2,3,4,5,6,7,8,9,10,11,12\}$ Let $\mathrm{R}=\{(1,3),(2,6),(3,10),(4$, $9)\} \subset \mathrm{A} \times \mathrm{B}$ be a relation. Show that R is a function and find its domain, co-domain and the range of R.
Answer:
Domain of $\mathrm{R}=\{1,2,3,4\}$
Co-domain of $\mathrm{R}=\mathrm{B}=\{-1,2,3,4,5,6,7,9,10,11,12\}$
Range of $R=\{3,6,10,9\}$
Question 2.
Let $\mathrm{A}=\{0,1,2,3\}$ and $\mathrm{B}=\{1,3,5,7,9\}$ be two sets. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be a function given by $\mathrm{f}(\mathrm{x})=$ $2 \mathrm{x}+1$. Represent this function as (i) a set of ordered pairs (ii) a table (iii) an arrow and (iv) a graph.
Solution:
$\mathrm{A}=\{0,1,2,3\}, \mathrm{B}=\{1,3,5,7,9\}$
$\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$
$\mathrm{f}(0)=2(0)+1=1$
$\mathrm{f}(1)=2(1)+1=3$
$\mathrm{f}(2)=2(2) \mp 1=5$
$\mathrm{f}(3)=2(3)+1=7$
(i) A set of ordered pairs.
$\mathrm{f}=\{(0,1),(1,3),(2,5),(3,7)\}$
(ii) A table

\boldsymbol{x}	0	1	2	3
$\boldsymbol{f}(\boldsymbol{x})$	1	3	5	7

(iii) An arrow diagram

(iv) A Graph $f=\{(x, f(x) / x \in \mathrm{~A}\}$

$$
=\{(0,1),(1,3),(2,5),(3,7)\}
$$

Question 3.
State whether the graph represent a function. Use vertical line test.

Solution:

It is not a function as the vertical line PQ cuts the graph at two points.
Question 4.
Let $\mathrm{f}=\{(2,7),(3,4),(7,9),(-1,6),(0,2),(5,3)\}$ be a function from $\mathrm{A}=\{-1,0,2,3,5,7\}$ to $\mathrm{B}=$ $\{2,3,4,6,7,9\}$. Is this (i) an one-one function (ii) an onto function, (iii) both one- one and onto function?
Solution:
It is both one-one and onto function.

All the elements in A have their separate images in B. All the elements in B have their preimage in A. Therefore it is one-one and onto function.

Question 5.
A function $f:(-7,6) \rightarrow R$ is defined as follows.

$$
f(x)=\left\{\begin{array}{cc}
x^{2}+2 x+1 & -7 \leq x<-5 \\
x+5 & -5 \leq x \leq 2 \\
x-1 & 2<x<6
\end{array}\right.
$$

Find (i) $2 \mathrm{f}(-4)+3 \mathrm{f}(2)$
(ii) $f(-7)-f(-3)$

Solution:
$f(x)= \begin{cases}x^{2}+2 x+1 & :-7 \leq x<-5 \\ x+5 & :-5 \leq x<-2 \\ x-1 & : 2<x<6\end{cases}$
(i) $2 \mathrm{f}(-4)+3 \mathrm{f}(2)$
$\mathrm{f}(-4)=\mathrm{x}+5=-4+5=1$
$2 \mathrm{f}(-4)=2 \times 1=2$
$\mathrm{f}(2)=\mathrm{x}+5=2+5=7$
$3 \mathrm{f}(2)=3(7)=21$
$\therefore 2 \mathrm{f}(-4)+3 \mathrm{f}(2)=2+21=23$
(ii) $f(-7)=x^{2}+2 x+1$
$=(-7)^{2}+2(-7)+1$
$=49-14+1=36$
$\mathrm{f}(3)=\mathrm{x}+5=-3+5=2$
$\mathrm{f}(-7)-\mathrm{f}(-3)=36-2=34$

Question 6.
If $A=\{2,3,5\}$ and $B=\{1,4\}$ then find
(i) $\mathrm{A} \times \mathrm{B}$
(ii) $\mathrm{B} \times \mathrm{A}$

Answer:
$\mathrm{A}=\{2,3,5\}$
B $=\{1,4\}$
(i) $\mathrm{A} \times \mathrm{B}=\{2,3,5\} \times\{1,4\}$
$=\{(2,1)(2,4)(3,1)(3,4)(5,1)(5,4)\}$.
(ii) $\mathrm{B} \times \mathrm{A}=\{1,4\} \times\{2,3,5\}$
$=\{(1,2)(1,3)(1,5)(4,2)(4,3)(4,5)\}$

Question 7.
Let $\mathrm{A}=\{5,6,7,8\}$;
$B=\{-11,4,7,-10,-7,-9,-13\}$ and $f=\{(x, y): y=3-2 x, x \in A, y \in B\}$.
(i) Write down the elements of f.
(ii) What is the co-domain?
(iii) What is the range?
(iv) Identify the type of function.

Answer:
Given, $\mathrm{A}=\{5,6,7,8\}$,
$B=\{-11,4,7,-10,-7,-9,-13\}$
$\mathrm{y}=3-2 \mathrm{x}$
ie; $f(x)=3-2 x$
$\mathrm{f}(5)=3-2(5)=3-10=-7$
$\mathrm{f}(6)=3-2(6)=3-12=-9$
$\mathrm{f}(7)=3-2(7)=3-14=-11$
$f(8)=3-2(8)=3-16=-13$
(i) $\mathrm{f}=\{(5,-7),(6,-9),(7,-11),(8,-13)\}$
(ii) Co-domain (B)
$=\{-11,4,7,-10,-7,-9,-13\} \mathrm{i}$
(iii) Range $=\{-7,-9,-11,-13\}$
(iv) It is one-one function.

Question 8.
A function $\mathrm{f}:[1,6] \rightarrow \mathrm{R}$ is defined as follows:

$$
f(x)=\left\{\begin{array}{ll}
1+x, & 1 \leq x<2 \\
2 x-1, & 2 \leq x<4 \\
3 x^{2}-10, & 4 \leq x<6
\end{array}, x \in \mathbb{R}: 1 \leq x<6\right)
$$

Find the value of (i) $f(5)$
(ii) $\mathrm{f}(3)$
(iii) $f(2)-f(4)$.

Solution:
$f(x)= \begin{cases}1+x & : 1 \leq x<2 \\ 2 x-1 & : 2 \leq x<4 \\ 3 x^{2}-10: 4 \leq x<6\end{cases}$
(i) $f(5)=3 x^{2}-10$
$=3\left(5^{2}\right)-10=75-10=65$
(ii) $f(3)=2 x-1$
$=2(3)-1=6-1=5$
(ii) $f(2)-f(4)$
$\mathrm{f}(2)=2 \mathrm{x}-1$
$=2(2)-1=3$
$f(4)=3 x^{2}-10$
$=3\left(4^{2}\right)-10=38$
$\therefore \mathrm{f}(2)-\mathrm{f}(4)=3-38=35$

Question 9.
The following table represents a function from $A=\{5,6,8,10\}$ to $B=\{19,15,9,11\}$, where $f(x)$ $=2 x-1$. Find the values of a and b.
Solution:

x	5	6	8	10
$f(x)$	a	11	b	19

$A=\{5,6,8,10\}, B=\{19,15,9,11\}$
$f(x)=2 x-1$
$f(5)=2(5)-1=9$
$f(8)=2(8)-1=15$
$\therefore \mathrm{a}=9, \mathrm{~b}=15$
Question 10.
If $R=\{(a,-2),(-5,6),(8, c),(d,-1)\}$ represents the identity function, find the values of a, b, c and d. Solution:
$R=\{(a,-2),(-5, b),(8, c),(d,-1)\}$ represents the identity function.
$a=-2, b=-5, c=8, d=-1$.

