Numbers and Sequences

Ex 2.1

Question 1.

Find all positive integers which when divided by 3 leaves remainder 2 .
Answer:
The positive integers when divided by 3 leaves remainder 2 .
By Euclid's division lemma $\mathrm{a}=\mathrm{bq}+\mathrm{r}, 0 \leq \mathrm{r}<\mathrm{b}$.
Here $\mathrm{a}=3 \mathrm{q}+2$, where $0 \leq \mathrm{q}<3$, a leaves remainder 2 when divided by 3 .
$\therefore 2,5,8,11$

Question 2.

A man has 532 flower pots. He wants to arrange them in rows such that each row contains 21 flower pots. Find the number of completed rows and how many flower pots are left over?
Answer:
Here $\mathrm{a}=532, \mathrm{~b}=21$
Using Euclid's division algorithm
$\mathrm{a}=\mathrm{bq}+\mathrm{r}$
$532=21 \times 25+7$
Number of completed rows $=21$
Number of flower pots left over $=7$

Question 3.

Prove that the product of two consecutive positive integers is divisible by 2 .
Solution:
Let $\mathrm{n}-1$ and n be two consecutive positive integers. Then their product is $(\mathrm{n}-1) \mathrm{n}$.
$(\mathrm{n}-1)(\mathrm{n})=\mathrm{n}^{2}-\mathrm{n}$.
We know that any positive integer is of the form $2 q$ or $2 q+1$ for some integer q. So, following cases arise.
Case I. When $\mathrm{n}=2 \mathrm{q}$.

In this case, we have
$\mathrm{n}^{2}-\mathrm{n}=(2 \mathrm{q})^{2}-2 \mathrm{q}=4 \mathrm{q}^{2}-2 \mathrm{q}=2 \mathrm{q}(2 \mathrm{q}-1)$
$\Rightarrow \mathrm{n}^{2}-\mathrm{n}=2 \mathrm{r}$, where $\mathrm{r}=\mathrm{q}(2 \mathrm{q}-1)$
$\Rightarrow \mathrm{n}^{2}-\mathrm{n}$ is divisible by 2 .
Case II. When $n=2 q+1$
In this case, we have
$\mathrm{n}^{2}-\mathrm{n}=(2 \mathrm{q}+1)^{2}-(2 \mathrm{q}+1)$
$=(2 q+1)(2 q+1-1)=2 q(2 q+1)$
$\Rightarrow \mathrm{n}^{2}-\mathrm{n}=2 \mathrm{r}$, where $\mathrm{r}=\mathrm{q}(2 \mathrm{q}+1)$.
$\Rightarrow \mathrm{n}^{2}-\mathrm{n}$ is divisible by 2 .
Hence, $\mathrm{n}^{2}-\mathrm{n}$ is divisible by 2 for every positive integer n .
Hence it is Proved

Question 4.

When the positive integers a, b and c are divided by 13 , the respective remainders are 9,7 and 10 .
Show that $\mathrm{a}+\mathrm{b}+\mathrm{c}$ is divisible by 13 .
Answer:
Let the positive integer be a, b, and c
We know that by Euclid's division lemma
$\mathrm{a}=\mathrm{bq}+\mathrm{r}$
$a=13 q+9 \ldots .(1)$
$b=13 q+7 \ldots$ (2)
$c=13 q+10 \ldots$ (3)
Add (1) (2) and (3)
$\mathrm{a}+\mathrm{b}+\mathrm{c}=13 \mathrm{q}+9+13 \mathrm{q}+7+13 \mathrm{q}+10$
$=39 q+26$
$a+b+c=13(3 q+2)$
This expansion will be divisible by 13
$\therefore \mathrm{a}+\mathrm{b}+\mathrm{c}$ is divisible by 13

Question 5.

Prove that square of any integer leaves the remainder either 0 or 1 when divided by 4 .
Solution:
Let x be any integer.
The square of x is x^{2}.
Let x be an even integer.
$x=2 q+0$
then $x^{2}=4 q^{2}+0$
When x be an odd integer
When $\mathrm{x}=2 \mathrm{k}+1$ for some interger k .
$\mathrm{x}^{2}=(2 \mathrm{k}+1)^{2}$
$=4 \mathrm{k}^{2}+4 \mathrm{k}+1$
$=4 \mathrm{k}(\mathrm{k}+1)+1$
$=4 q+1$
where $\mathrm{q}=\mathrm{k}(\mathrm{k}+1)$ is some integer.
Hence it is proved.

Question 6.

Use Euclid's Division Algorithm to find the Highest Common Factor (H.C.F) of (i) 340 and 412

Answer:
To find the HCF of 340 and 412 using Euclid's division algorithm. We get $412=340 \times 1+72$
The remainder $72 \neq 0$
Again applying Euclid's division algorithm to the division of 340
$340=72 \times 4+52$
The remainder $52 \neq 0$
Again applying Euclid's division algorithm to the division 72 and remainder 52 we get $72=52 \times 1+20$
The remainder $20 \neq 0$
Again applying Euclid's division algorithm
$52=20 \times 2+12$
The remainder $12 \neq 0$
Again applying Euclid's division algorithm
$20=12 \times 1+8$
The remainder $8 \neq 0$
Again applying Euclid's division algorithm $12=8 \times 1+4$
The remainder $4 \neq 0$
Again applying Euclid's division algorithm
$8=4 \times 2+0$
The remainder is zero
\therefore HCF of 340 and 412 is 4
(ii) 867 and 255

Answer:
To find the HCF of 867 and 255 using
Euclid's division algorithm. We get
$867=255 \times 3+102$
The remainder $102 \neq 0$
Using Euclid's division algorithm
$255=102 \times 2+51$
The remainder $51 \neq 0$

Again using Euclid's division algorithm
$102=51 \times 2+0$
The remainder is zero
$\therefore \mathrm{HCF}=51$
\therefore HCF of 867 and 255 is 51
(iii) 10224 and 9648

Answer:
Find the HCF of 10224 and 9648 using Euclid's division algorithm. We get $10224=9648 \times 1+576$
The remainder $576 \neq 0$
Again using Euclid's division algorithm
$9648=576 \times 16+432$
The remainder $432 \neq 0$
Using Euclid's division algorithm
$576=432 \times 1+144$
The remainder $144 \neq 0$
Again using Euclid's division algorithm
$432=144 \times 3+0$
The remainder is 0
$\therefore \mathrm{HCF}=144$
The HCF of 10224 and 9648 is 144
(iv) 84,90 and 120

Answer:
Find the HCF of 84, 90 and 120 using Euclid's division algorithm
$90=84 \times 1+6$
The remainder $6 \neq 0$
Using Euclid's division algorithm
$4=14 \times 6+0$
The remainder is 0
$\therefore \mathrm{HCF}=6$
The HCF of 84 and 90 is 6
Find the HCF of 6 and 120
$120=6 \times 20+0$
The remainder is 0
\therefore HCF of 120 and 6 is 6
\therefore HCF of 84,90 and 120 is 6

Question 7.

Find the largest number which divides 1230 and 1926 leaving remainder 12 in each case. Solution:
The required number is the H.C.F. of the numbers.
$1230-12=1218$,
$1926-12=1914$
First we find the H.C.F. of 1218 \& 1914 by Euclid's division algorithm.
$1914=1218 \times 1+696$
The remainder $696 \neq 0$.
Again using Euclid's algorithm
$1218=696 \times 1+522$
The remainder $522 \neq 0$.
Again using Euclid's algorithm.
$696=522 \times 1+174$
The remainder $174 \neq 0$.
Again by Euclid's algorithm
$522=174 \times 3+0$
The remainder is zero.
\therefore The H.C.F. of 1218 and 1914 is 174.
\therefore The required number is 174 .

Question 8.

If d is the Highest Common Factor of 32 and 60 , find x and y satisfying $d=32 x+60 y$.
Answer:
Find the HCF of 32 and 60
$60=32 \times 1+28 \ldots$.(1)
The remainder $28 \neq 0$
By applying Euclid's division lemma
$32=28 \times 1+4 \ldots$. (2)
The remainder $4 \neq 0$
Again by applying Euclid's division lemma
$28=4 \times 7+0$
The remainder is 0
HCF of 32 and 60 is 4
From (2) we get
$32=28 \times 1+4$
$4=32-28$
$=32-(60-32)$
$4=32-60+32$
$4=32 \times 2-60$
$4=32 \times 2+(-1) 60$
When compare with $\mathrm{d}=32 \mathrm{x}+60 \mathrm{y}$
$\mathrm{x}=2$ and $\mathrm{y}=-1$
The value of $x=2$ and $y=-1$

Question 9.

A positive integer when divided by 88 gives the remainder 61 . What will be the remainder when
the same number is divided by 11 ?
Solution:
Let a (+ve) integer be x.
$x=88 \times y+61$
$61=11 \times 5+6(\because 88$ is multiple of 11$)$
$\therefore 6$ is the remainder. (When the number is divided by 88 giving the remainder 61 and when divided by 11 giving the remainder 6).

Question 10.

Prove that two consecutive positive integers are always coprime.
Answer:

1. Let the consecutive positive integers be x and $\mathrm{x}+1$.
2. The two number are co - prime both the numbers are divided by 1 .
3. If the two terms are x and $x+1$ one is odd and the other one is even.
4. HCF of two consecutive number is always 1 .
5. Two consecutive positive integer are always coprime.

Fundamental Theorem of Arithmetic
Every composite number can be written uniquely as the product of power of prime is called fundamental theorem of Arithmetic.

Ex 2.2

Question 1.

For what values of natural number $\mathrm{n}, 4 \mathrm{n}$ can end with the digit 6 ?
Solution:
$4^{\mathrm{n}}=(2 \times 2)^{\mathrm{n}}=2^{\mathrm{n}} \times 2^{\mathrm{n}}$
2 is a factor of $4^{\text {n }}$.
So, 4^{n} is always even and end with 4 and 6 .
When n is an even number say $2,4,6,8$ then 4^{n} can end with the digit 6 .
Example:
$4^{2}=16$
$4^{3}=64$
$4^{4}=256$
$4^{5}=1,024$
$4^{6}=4,096$
$4^{7}=16,384$
$4^{8}=65,536$
$4^{9}=262,144$

Question 2.

If m, n are natural numbers, for what values of m , does $2^{\mathrm{n}} \times 5^{\mathrm{m}}$ ends in 5 ?
Answer:
2^{n} is always even for any values of n .
[Example. $2^{2}=4,2^{3}=8,2^{4}=16$ etc]
5^{m} is always odd and it ends with 5 .
[Example. $5^{2}=25,5^{3}=125,5^{4}=625 \mathrm{etc}$]
But $2^{\mathrm{n}} \times 5^{\mathrm{m}}$ is always even and end in 0 .
[Example. $2^{3} \times 5^{3}=8 \times 125=1000$
$2^{2} \times 5^{2}=4 \times 25=100$]
$\therefore 2^{\mathrm{n}} \times 5^{\mathrm{m}}$ cannot end with the digit 5 for any values of m .

Question 3.

Find the H.C.F. of 252525 and 363636.
Solution:
To find the H.C.F. of 252525 and 363636
Using Euclid's Division algorithm
$363636=252525 \times 1+111111$
The remainder $111111 \neq 0$.
\therefore Again by division algorithm
$252525=111111 \times 2+30303$
The remainder $30303 \neq 0$.
\therefore Again by division algorithm.
$111111=30303 \times 3+20202$
The remainder $20202 \neq 0$.
\therefore Again by division algorithm
$30303=20202 \times 1+10101$
The remainder $10101 \neq 0$.
\therefore Again using division algorithm $20202=10101 \times 2+0$
The remainder is 0 .
$\therefore 10101$ is the H.C.F. of 363636 and 252525 .

Question 4.

If $13824=2^{a} \times 3^{b}$ then find a and b.
Solution:
If $13824=2^{a} \times 3^{b}$
Using the prime factorisation tree

$13824=2 \times 2 \times 3 \times 3 \times 3$
$=2^{9} \times 3^{3}=2^{\mathrm{a}} \times 3^{\mathrm{b}}$
$\therefore \mathrm{a}=9, \mathrm{~b}=3$.

Question 5.

If $\mathrm{p}_{1}{ }^{\mathrm{x}}{ }_{1} \times \mathrm{p}_{2}{ }_{2}{ }_{2} \times \mathrm{p}_{3}{ }^{\mathrm{x}}{ }_{3} \times \mathrm{p}_{4}{ }_{4}=113400$ where $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}$ are primes in ascending order and $\mathrm{x}_{1}, \mathrm{x}_{2}$, x_{3}, x_{4} are integers, find the value of $P_{1}, P_{2}, P_{3}, P_{4}$ and $x_{1}, x_{2}, x_{3}, x_{4}$.
Solution:
If $\mathrm{p}_{1}{ }^{\mathrm{x}}{ }_{1} \times \mathrm{p}_{2}{ }^{\mathrm{x}}{ }_{2} \times \mathrm{p}_{3}{ }^{\mathrm{x}}{ }_{3} \times \mathrm{p}_{4}{ }_{4}{ }_{4}=113400$
$\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{P}_{4}$ are primes in ascending order, $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ are integers. using Prime factorisation tree.

113400

$113400=2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 7$
$=23 \times 34 \times 52 \times 7$
$=\mathrm{p}_{1} \mathrm{x}_{1} \times \mathrm{p}_{2}{ }_{2}{ }_{2} \times \mathrm{p}_{3} \mathrm{x}_{3} \times \mathrm{p}_{4}{ }_{4}{ }_{4}$
$\therefore \mathrm{p}_{1}=2, \mathrm{p}_{2}=3, \mathrm{p}_{3}=5, \mathrm{p}_{4}=7, \mathrm{x}_{1}=3, \mathrm{x}_{2}=4, \mathrm{x}_{3}=2, \mathrm{x}_{4}=1$.
Question 6.
Find the L.C.M. and H.C.F. of 408 and 170 by applying the fundamental theorem of arithmetic.
Solution:
408 and 170.

$408=2^{3} \times 3^{1} \times 17^{1}$
$170=2^{1} \times 5^{1} \times 17^{1}$

Common Prime Factors	Least Exponents
2	1
17	1

\therefore H.C.F. $=2^{1} \times 17^{1}=34$.
To find L.C.M, we list all prime factors of 408 and 170, and their greatest exponents as follows.

Prime factors of 408 and 170	Greatest Exponents
2	3
3	1
5	1
17	1

\therefore L.C.M. $=2^{3} \times 3^{1} \times 5^{1} \times 17^{1}$
$=2040$.

Question 7.

Find the greatest number consisting of 6 digits which is exactly divisible by $24,15,36$?
Solution:
To find L.C.M of 24, 15, 36

Prime factors of 24, 15,36	Greatest Exponents
2	3
3	2
5	MODEL PAPERS, 1 ICERT BO

\therefore L.C. $M=2^{3} \times 3^{2} \times 5^{1}$
$=8 \times 9 \times 5$
$=360$
If a number has to be exactly divisible by 24,15 , and 36 , then it has to be divisible by 360 . Greatest 6 digit number is 999999 .
Common multiplies of $24,15,36$ with 6 digits are $103680,116640,115520, \ldots 933120,999720$ with six digits.
\therefore The greatest number consisting 6 digits which is exactly divisible by $24,15,36$ is 999720 .

Question 8.

What is the smallest number that when divided by three numbers such as 35,56 and 91 leaves remainder 7 in each case?
Answer:
Find the L.C.M of 35,56 , and 91
$35-5 \times 756$
$56=2 \times 2 \times 2 \times 7$
$91=7 \times 13$
L.C. $M=23 \times 5 \times 7 \times 13$
$=3640$

Since it leaves remainder 7
The required number $=3640+7$
$=3647$
The smallest number is $=3647$

Question 9.

Find the least number that is divisible by the first ten natural numbers.
Solution:
The least number that is divisible by the first ten natural numbers is 2520 .
Hint:
$1,2,3,4,5,6,7,8,9,10$
The least multiple of $2 \& 4$ is 8
The least multiple of 3 is 9
The least multiple of 7 is 7
The least multiple of 5 is 5
$\therefore 5 \times 7 \times 9 \times 8=2520$.
L.C.M is $8 \times 9 \times 7 \times 5$
$=40 \times 63$
$=2520$

Ex 2.3

Question 1.

Find the least positive value of x such that
(i) $71 \equiv \mathrm{x}(\bmod 8)$
(ii) $78+x \equiv 3(\bmod 5)$
(iii) $89 \equiv(x+3)(\bmod 4)$
(iv) $96=\frac{x}{7}(\bmod 5)$
(v) $5 x \equiv 4(\bmod 6)$

Solution:
To find the least value of x such that
(i) $71 \equiv \mathrm{x}(\bmod 8)$
$71 \equiv 7(\bmod 8)$
$\therefore \mathrm{x}=7 .[\because 71-7=64$ which is divisible by 8$]$
(ii) $78+x \equiv 3(\bmod 5)$
$\Rightarrow 78+x-3=5 n$ for some integer n.
$75+\mathrm{x}=5 \mathrm{n}$
$75+x$ is a multiple of 5 .
$75+5=80.80$ is a multiple of 5.
Therefore, the least value of x must be 5 .
(iii) $89 \equiv(x+3)(\bmod 4)$
$89-(x+3)=4 n$ for some integer n.
$86-x=4 n$
$86-x$ is a multiple of 4 .
\therefore The least value of x must be 2 then
$86-2=84$.
84 is a multiple of 4 .
$\therefore \mathrm{x}$ value must be 2 .
(iv) $96 \equiv \frac{x}{7}(\bmod 5)$
$96-\frac{x}{7}=5 \mathrm{n}$ for some integer n .
$\frac{672-x}{7}=5 \mathrm{n}$
$672-\mathrm{x}=35 \mathrm{n}$.
$672-x$ is a multiple of 35 .
\therefore The least value of x must be 7 i.e. 665 is a multiple of 35 .
(v) $5 x \equiv 4(\bmod 6)$
$5 \mathrm{x}-4=6 \mathrm{M}$ for some integer n .
$5 \mathrm{x}=6 \mathrm{n}+4$
$\mathrm{x}=\frac{6 n+4}{5}$
When we put $1,6,11, \ldots$ as n values in $x=\frac{6 n+4}{5}$ which is divisible by 5 .
When $\mathrm{n}=1, \mathrm{x}=\frac{10}{5}=2$
When $\mathrm{n}=6, \mathrm{x}=\frac{36+4}{5}=\frac{40}{5}=8$ and so on.
\therefore The solutions are $2,8,14 \ldots$..
\therefore Least value is 2 .

Question 2.

If x is congruent to 13 modulo 17 then $7 x-3$ is congruent to which number modulo 17 ?
Answer:
Given $x \equiv 13(\bmod 17) \ldots \ldots(1)$
$7 \mathrm{x}-3 \equiv \mathrm{a}(\bmod 17)$
From (1) we get
$\mathrm{x}-13=17 \mathrm{n}$ (n may be any integer)
$x-13$ is a multiple of 17
\therefore The least value of $\mathrm{x}=30$
From (2) we get
$7(30)-3 \equiv \mathrm{a}(\bmod 17)$
$210-3 \equiv \mathrm{a}(\bmod 17)$
$207 \equiv \mathrm{a}(\bmod 17)$
$207 \equiv 3(\bmod 17)$
\therefore The value of $\mathrm{a}=3$

Question 3.

Solve $5 \mathrm{x} \equiv 4(\bmod 6)$
Solution:
$5 \mathrm{x} \equiv 4(\bmod 6)$
$5 \mathrm{x}-4=6 \mathrm{M}$ for some integer n .
$5 \mathrm{x}=6 \mathrm{n}+4$
$\mathrm{x}=\frac{6 n+4}{5}$ where $\mathrm{n}=1,6,11, \ldots \ldots$
$\therefore \mathrm{x}=2,8,14, \ldots$

Question 4.

Solve $3 \mathrm{x}-2 \equiv 0(\bmod 11)$
Solution:
$3 \mathrm{x}-2 \equiv 0(\bmod 11)$
$3 \mathrm{x}-2=11 \mathrm{n}$ for some integer n .
$3 \mathrm{x}=11 \mathrm{n}+2$

$$
\begin{aligned}
x & =\frac{11 n+2}{3} \text { where } n=2,5,8, \ldots \\
x & =\frac{11 \times 2+2}{3}=8 \\
\therefore \quad x & =\frac{11 \times 5+2}{3}=\frac{55+2}{3} \\
& =\frac{57}{3}=19 \\
x & =\frac{11 \times 8+2}{3}=\frac{88+2}{3} \\
& =\frac{90}{3}=30 . \\
\therefore \quad x & =8,19,30, \ldots
\end{aligned}
$$

Question 5.

What is the time 100 hours after 7 a.m.?
Solution:
$100 \equiv \mathrm{x}(\bmod 12)(\because 7$ comes in every 12 hrs$)$
$100 \equiv 4(\bmod 12)(\because$ Least value of x is 4$)$
\therefore The time 100 hrs after $7 \mathrm{O}^{\prime}$ clock is $7+4=11 \mathrm{O}^{\prime}$ clock i.e. $11 \mathrm{a} . \mathrm{m}$

Question 6.

What is time 15 hours before 11 p.m.?
Answer:
$15 \equiv \mathrm{x}(\bmod 12)$
$15 \equiv 3(\bmod 12)$

The value of x must be 3 .
17) $\frac{12}{207}$

17
37
34
3

The time 15 hours before 11 o'clock is $(11-3) 8 \mathrm{pm}$

Question 7.

Today is Tuesday. My uncle will come after 45 days. In which day my uncle will be coming?
Solution:
No. of days in a week $=7$ days.
$45 \equiv \mathrm{x}(\bmod 7)$
$45-\mathrm{x}=7 \mathrm{n}$
$45-\mathrm{x}$ is a multiple of 7 .
\therefore Value of \bar{x} must be 3 .
\therefore Three days after Tuesday is Friday. Uncle will come on Friday.

Question 8.

Prove that $2^{\mathrm{n}}+6 \times 9 \mathrm{n}$ is always divisible by 7 for any positive integer n .
Answer:
$9=2(\bmod 7)$
$9^{\mathrm{n}}=2^{\mathrm{n}}(\bmod 7)$ and $2^{\mathrm{n}}=2^{\mathrm{n}}(\bmod 7)$
$2^{\mathrm{n}}+6 \times 9^{\mathrm{n}}=2^{\mathrm{n}}(\bmod 7)+6\left[2^{\mathrm{n}}(\bmod 7)\right]$
$=2^{\mathrm{n}}(\bmod 7)+6 \times 2^{\mathrm{n}}(\bmod 7)$
$7 \times 2^{\mathrm{n}}(\bmod 7)$
It is always divisible for any positive integer n

Question 9.

Find the remainder when 2^{81} is divided by 17 .
Solution:

$$
\begin{aligned}
& 2^{81} \equiv x(\bmod 17) \\
& 2^{40} \times 2^{40} \times 2^{41} \equiv x(\bmod 17) \\
& \left(2^{4}\right)^{10} \times\left(2^{4}\right)^{10} \times 2^{1} \equiv x(\bmod 17) \\
& (16)^{10} \times(16)^{10} \times 2 \equiv x(\bmod 17) \\
& \left(16^{5}\right)^{2} \times\left(16^{5}\right)^{2} \times 2
\end{aligned}
$$

$\left(16^{5}\right) \equiv 16(\bmod 17)$
$\left(16^{5}\right)^{2} \equiv 16^{2}(\bmod 17)$
$\left(16^{5}\right)^{2} \equiv 256(\bmod 17)$
$\equiv 1(\bmod 17)[\because 255$ is divisible by 17$]$
$\left(16^{5}\right)^{2} \times\left(16^{5}\right)^{2} \times 2 \equiv 1 \times 1 \times 2(\bmod 17)$
$\therefore 2^{81} \equiv 2(\bmod 17)$
$\therefore \mathrm{x}=2$

Question 10.

The duration of flight travel from Chennai to London through British Airlines is approximately 11 hours. The aeroplane begins its journey on Sunday at $23: 30$ hours. If the time at Chennai is four and a half hours ahead to that of London's time, then find the time in London, when will the flight lands at London Airport.
Solution:
The duration of the flight from Chennai to London is 11 hours.
Starting time at Chennai is $23.30 \mathrm{hrs} .=11.30 \mathrm{p} . \mathrm{m}$.
Travelling time $=11.00 \mathrm{hrs} .=22.30 \mathrm{hrs}=10.30 \mathrm{a} . \mathrm{m}$.
Chennai is $4 \frac{1}{2} \mathrm{hrs}$ ahead to London.
$=10.30-4.30=6.00$
\therefore At 6 a.m. on Monday the flight will reach at London Airport.

Ex 2.4

Question 1.

Find the next three terms of the following sequence.
(i) $8,24,72, \ldots \ldots$
(ii) $5,1,-3$,
(iii) $\frac{1}{4}, \frac{2}{9}, \frac{3}{16} \ldots \ldots \ldots \ldots$

Solution:
(i) $8,24,72 \ldots$

In an arithmetic sequence $\mathrm{a}=8$,
$\mathrm{d}=\mathrm{t}_{1}-\mathrm{t}_{1}=\mathrm{t}_{3}-\mathrm{t}_{2}$
$=24-8 \quad 72-24$
$=16 \neq 48$
So, it is not an arithmetic sequence. In a geometric sequence,
$\mathrm{r}=\frac{t_{2}}{t_{1}}=\frac{t_{3}}{t_{2}}$
$\Rightarrow \frac{24}{8}=\frac{72}{24}$
$\Rightarrow 3=3$
\therefore It is a geometric sequence
\therefore The $\mathrm{n}^{\text {th }}$ term of a G.P is $\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$\therefore \mathrm{t}_{4}=8 \times 3^{4-1}$
$=8 \times 3^{3}$
$=8 \times 27$
$=216$
$\mathrm{t}_{5}=8 \times 3^{5-1}$
$=8 \times 3^{4}$
$=8 \times 81$
$=648$
$\mathrm{t}_{6}=8 \times 3^{6-1}$
$=8 \times 3^{5}$
$=8 \times 243$
$=1944$
The next 3 terms are 8, 24, 72, 216, 648, 1944.
(ii) $5,1,-3, \ldots$
$\mathrm{d}=\mathrm{t}_{2}-\mathrm{t}_{1}=\mathrm{t}_{3}-\mathrm{t}_{2}$
$\Rightarrow 1-5=-3-1$
$-4=-4 \therefore$ It is an A.P.
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{t}_{4}=5+3 \times-4$
=5-12
$=-7$
$15=\mathrm{a}+4 \mathrm{~d}$
$=5+4 \times-4$
$=5-16$
$=-11$
$\mathrm{t}_{6}=\mathrm{a}+5 \mathrm{~d}$
$=5+5 \times-4$
$=5-20$
$=-15$
\therefore The next three terms are $5,1,-3, \underline{-7}, \underline{-11}, \underline{-15}$.
(iii) $\frac{1}{4}, \frac{2}{9}, \frac{3}{16}, \ldots \ldots \ldots \ldots$

Here $\mathrm{a}_{\mathrm{n}}=$ Numerators are natural numbers and denominators are squares of the next numbers $\frac{1}{4}, \frac{2}{9}, \frac{3}{16}, \frac{4}{25}, \frac{5}{36}, \frac{6}{49}$

Question 2.

Find the first four terms of the sequences whose $\mathrm{n}^{\text {th }}$ terms are given by
(i) $a_{n}=n^{3}-2$

Answer:
$\mathrm{a}_{\mathrm{n}}=\mathrm{n}^{3}-2$
$a_{1}=1^{3}-2=1-2=-1$
$a_{2}=2^{3}-2=8-2=6$
$a_{3}=3^{3}-2=27-2=25$
$a_{4}=4^{3}-2=64-2=62$
The four terms are $-1,6,25$ and 62
(ii) $\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}+1} \mathrm{n}(\mathrm{n}+1)$

Answer:
$\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}+1} \mathrm{n}(\mathrm{n}+1)$
$a_{1}=(-1)^{2}(1)(2)=1 \times 1 \times 2=2$
$\mathrm{a}_{2}=(-1)^{3}(2)(3)=-1 \times 2 \times 3=-6$
$\mathrm{a}_{3}=(-1)^{4}(3)(4)=1 \times 3 \times 4=12$
$\mathrm{a}_{4}=(-1)^{5}(4)(5)=-1 \times 4 \times 5=-20$
The four terms are $2,-6,12$ and -20
(iii) $a_{n}=2 n^{2}-6$

Answer:
$\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}^{2}-6$
$a_{1}=2(1)^{2}-6=2-6=-4$
$\mathrm{a}_{2}=2(2)^{2}-6=8-6=2$
$a_{3}=2(3)^{2}-6=18-6=12$
$a_{4}=2(4)^{2}-6=32-6=26$
The four terms are $-4,2,12,26$

Question 3.

Find the $\mathrm{n}^{\text {th }}$ term of the following sequences
(i) $2,5,10,17, \ldots \ldots \ldots$
(ii) $0, \frac{1}{2}, \frac{2}{3}, \ldots \ldots$
(iii) $3,8,13,18, \ldots \ldots \ldots$

Solution:
(i) $2,5,10,17$
$=1^{2}+1,2^{2}+1,3^{2}+1,4^{2}+1 \ldots \ldots \ldots$
$\therefore \mathrm{n}^{\text {th }}$ term is $\mathrm{n}^{2}+1$
(ii) $0, \frac{1}{2}, \frac{2}{3}$, .
$=\frac{1-1}{1}, \frac{2-1}{2}, \frac{3-1}{3} \ldots$.
$\Rightarrow \frac{n-1}{n}$
\therefore nth term is $\frac{n-1}{n}$
(iii) $3,8,13,18$

$$
\begin{aligned}
& \mathrm{a}=3 \\
& \mathrm{~d}=5 \\
& \mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
& =3+(\mathrm{n}-1) 5 \\
& =3+5 \mathrm{n}-5 \\
& =5 \mathrm{n}-2 \\
& \therefore \mathrm{n}^{\text {th }} \text { term is } 5 \mathrm{n}-2
\end{aligned}
$$

Question 4.

Find the indicated terms of the sequences whose $\mathrm{n}^{\text {th }}$ terms are given by
(i) $\mathrm{a}_{\mathrm{n}}=\frac{5 n}{n+2} ; \mathrm{a}_{6}$ and a_{13}
(ii) $a_{n}=-\left(n^{2}-4\right) ; a_{4}$ and a_{11}

Solution:

$$
\begin{align*}
a_{n} & =\frac{5 n}{n+2} \tag{i}\\
a_{13} & =\frac{5 \times 13}{13+2}=\frac{65^{13}}{15^{3}}=\frac{13}{3}
\end{align*}
$$

-

(ii)

$$
\begin{aligned}
a_{n} & =-\left(n^{2}-4\right) ; a_{4} \text { and } a_{11} \\
a_{4} & =-\left(4^{2}-4\right) \\
& =-(16-4)=-12 \\
a_{11} & =-\left(11^{2}-4\right) \\
& =-(121-4)=-117
\end{aligned}
$$

Question 5.

Find a_{8} and a_{15} whose $\mathrm{n}^{\text {th }}$ term is
$a_{n}=\left\{\begin{array}{l}\frac{n^{2}-1}{n+3} ; n \text { is even, } n \in \mathrm{~N} \\ \frac{n^{2}}{2 n+1} ; n \text { is odd, } n \in \mathrm{~N}\end{array}\right.$
Solution:

$$
\left.\begin{array}{l}
a_{n}=\left\{\begin{array}{l}
\frac{n^{2}-1}{n+3}, n \text { is even } \\
\frac{n^{2}}{2 n+1}, n \text { is odd }
\end{array}\right. \\
a_{8}=\frac{n^{2}-1}{n+3}=\frac{8^{2}-1}{8+3}=\frac{64-1}{11}=\frac{63}{11}
\end{array}\right\} \begin{aligned}
& a_{15}=\frac{n^{2}}{2 n+1}=\frac{15^{2}}{2 \times 15+1}=\frac{225}{30+1}=\frac{225}{31}
\end{aligned}
$$

Question 6.
If $a_{1}=1, a_{2}=1$ and $a_{n}=2 a_{n-1}+a_{n-2} n \geq 3, n \in N$. Then find the first six terms of the sequence.
Answer:
$\mathrm{a}_{1}=\mathrm{a}_{2}=1$
$\mathrm{a}_{\mathrm{n}}=2 \mathrm{a}_{\mathrm{n}-1}+\mathrm{a}_{\mathrm{n}-2}$
$a_{3}=2 a_{3-1}+a_{3-2}=2 a_{2}+a_{1}$
$=2(1)+1=3$
$\mathrm{a}_{4}=2 \mathrm{a}_{4-1}+\mathrm{a}_{4-2}$
$=2 \mathrm{a}_{3}+\mathrm{a}_{2}$
$=2(3)+1=6+1=7$
$\mathrm{a}_{5}=2 \mathrm{a}_{5-1}+\mathrm{a}_{5-2}$
$=2 \mathrm{a}_{4}+\mathrm{a}_{3}$
$=2(7)+3=17$
$a_{6}=2 a_{6-1}+a_{6-2}$
$=2 a_{5}+a_{4}$
$=2(17)+7$
$=34+7=41$
The sequence is $1,1,3,7,17,41, \ldots$

Ex 2.5

Question 1.

Check whether the following sequences are in A.P.
(i) $a-3, a-5, a-7, \ldots \ldots \ldots$
(ii) $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \ldots \ldots \ldots \ldots$
(iii) $9,13,17,21,25$,
(iv) $\frac{-1}{3}, 0, \frac{1}{3}, \frac{2}{3}, \ldots \ldots \ldots \ldots$
(v) $1,-1,1,-1,1,-1, \ldots$

Solution:
To prove it is an A.P, we have to show $d=t_{2}-t_{1}=t_{3}-t_{2}$.
(i) $a-3, a-5, a-7 \ldots \ldots \ldots$
$\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}$
$\mathrm{d}=\mathrm{t}_{2}-\mathrm{t}_{1}=\mathrm{a}-5-(\mathrm{a}-3)=\mathrm{a}-5-\mathrm{a}+3=-2$
$\therefore \mathrm{d}=-2 \quad \therefore \mathrm{It}$ is an A.P.
$\mathrm{d}=\mathrm{t}_{3}-\mathrm{t}_{2}=\mathrm{a}-7-(\mathrm{a}-5)=\mathrm{a}-7-\mathrm{a}+5=-2$
(ii) $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{4}$,

$$
\begin{aligned}
& \left.\begin{aligned}
d=t_{2} & -t_{1} \\
& \Rightarrow \frac{1}{3}-\frac{1}{2} \\
& =\frac{2-3}{6} \\
& =\frac{-1}{6}
\end{aligned} \right\rvert\, \begin{array}{l}
d=t_{3}-t_{2} \\
\frac{1}{4}-\frac{1}{3}
\end{array} \\
& \frac{-1}{6} \neq \frac{-1}{12} \\
& \Rightarrow t_{2}-t_{1} \neq t_{3}-t_{2} \quad \therefore \text { It is not an A.P. }
\end{aligned}
$$

(iii) $9,13,17,21,25, \ldots$

$$
\begin{aligned}
d=t_{2}-t_{1} & =13-9=4 \\
d=t_{3}-t_{2} & =17-13=4 \\
4 & =4
\end{aligned}
$$

\therefore It is an A.P.
(iv) $\frac{-1^{\circ}}{3}, 0, \frac{1}{3}, \frac{2}{3}, \ldots$

$$
\begin{aligned}
d=t_{2}-t_{1} & =0-\left(-\frac{1}{3}\right)=\frac{1}{3} \\
d=t_{3}-t_{2} & =\frac{1}{3}-0=\frac{1}{3} \\
\frac{1}{3} & =\frac{1}{3}
\end{aligned}
$$

\therefore It is an A.P.

(v) $1,-1,1,-1,1,-1, \ldots$
$\mathrm{d}=\mathrm{t}_{2}-\mathrm{t}_{1}=-1-1=-2$
$\mathrm{d}=\mathrm{t}_{3}-\mathrm{t}_{2}=1-(-1)=2$
$-2 \neq 2 \therefore$ It is not an A.P.

Question 2.

First term a and common difference d are given below. Find the corresponding A.P.
(i) $a=5, d=6$
(ii) $a=7, d=5$
(iii) $\mathrm{a}=\frac{3}{4}, \mathrm{~d}=\frac{1}{2}$

Solution:
(i) $a=5, d=6$
A.P a, a $+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}, \ldots \ldots .$.
$=5,5+6,5+2 \times 6, \ldots \ldots \ldots$
$=5,11,17, \ldots$
(ii) $a=7, d=-5$
A.P. $=\mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}, \ldots$
$=7,7+(-5), 7+2(-5)$,
$=7,2,-3, \ldots \ldots, \ldots$
(iii) $\mathrm{a}=\frac{3}{4}, \mathrm{~d}=\frac{1}{2}$

$$
\begin{aligned}
\mathrm{A} \cdot \mathrm{P} & =a, a+d, a+2 d, \ldots \\
& =\frac{3}{4}, \frac{3}{4}+\frac{1}{2}, \frac{3}{4}+2\left(\frac{1}{2}\right), \ldots \\
& =\frac{3}{4}, \frac{3+2}{4}, \frac{3+4}{4}, \ldots \\
\text { A.P } & =\frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \cdots, \text { DELPAPER }
\end{aligned}
$$

Question 3.

Find the first term and common difference of the Arithmetic Progressions whose nthterms are given below
(i) $t_{n}=-3+2 n$

Answer:
$\mathrm{t}_{\mathrm{n}}=-3+2 \mathrm{n}$
$\mathrm{t}_{1}=-3+2(1)=-3+2$
$=-1$
$t_{2}=-3+2(2)=-3+4$
$=1$
First term $(a)=-1$ and
Common difference
$(d)=1-(-1)=1+1=2$
(ii) $\mathrm{t}_{\mathrm{n}}=4-7 \mathrm{n}$

Answer:
$\mathrm{t}_{\mathrm{n}}=4-7 \mathrm{n}$
$\mathrm{t}_{1}=4-7(1)$
$=4-7=-3$
$\mathrm{t}_{2}=4-7(2)$
$=4-14=-10$
First term $(a)=-3$ and
Common difference (d) $=10-(-3)$
$=-10+3$
$=-7$

Question 4.

Find the 19th term of an A.P. $-11,-15,-19, \ldots \ldots . .$.
Solution:

$$
\begin{aligned}
& \text { A.P }=-11,-15,-19, \ldots \ldots \ldots \\
& a=-11 \\
& d=t_{2}-t_{1}=-15-(-11) \\
& =-15+11 \\
& =-4 \\
& n=19 \\
& \therefore t_{n}=a+(n-1) d \\
& t_{19}=-11+(19-1)(-4) \\
& =-11+18 \times-4 \\
& =-11-72 \\
& =-83
\end{aligned}
$$

Question 5.

Which term of an A.P. 16, 11, 6, $1, \ldots$ is -54 ?
Answer:
First term (a) = 16
Common difference $(d)=11-16=-5$
$\mathrm{t}_{\mathrm{n}}=-54$
$a+(n-1) d=-54$
$16+(\mathrm{n}-1)(-5)=-54$
$54+21=-54$
$54+21=5 n$
$75=5 n$
$\mathrm{n}=\frac{75}{5}=15$
The $15^{\text {th }}$ term is -54

Question 6.

Find the middle term(s) of an A.P. 9, 15, 21, 27, , 183.

Solution:
A.P $=9,15,21,27, \ldots, 183$

No. of terms in an A.P. is
$\mathrm{n}=\frac{l-a}{d}+1$
$\mathrm{a}=9,1=183, \mathrm{~d}=15-9=6$
$\therefore \mathrm{n}=\frac{183-9}{6}+1$
$=\frac{174}{6}+1$
$=29+1=30$
\therefore No. of terms $=30$. The middle must be 15 th term and 16 th term.
$\therefore \mathrm{t}_{15}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$=9+14 \times 6$
$=9+84$
$=93$
$\mathrm{t}_{16}=\mathrm{a}+15 \mathrm{~d}$
$=9+15 \times 6$
$=9+90=99$
\therefore The middle terms are 93,99 .

Question 7.

If nine times the ninth term is equal to the fifteen times fifteenth term, Show that six times twenty fourth term is zero.
Answer:
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
9 times $9^{\text {th }}$ term $=15$ times $15^{\text {th }}$ term
$9 \mathrm{t}_{9}=15 \mathrm{t}_{15}$
$9[a+8 d]=15[a+14 d]$
$9 a+72 d=15 a+210 d$
$9 a-15 a+72 d-210 d=0$
$-6 a-138 d=0$
$6 a+138 d=0$
$6[a+23 d]=0$
$6[a+(24-1) d]=0$
$6 \mathrm{t}_{24}=0$
\therefore Six times 24th terms is 0 .

Question 8.

If $3+k, 18-k, 5 k+1$ are in A.P. then find k.
Solution:
$3+\mathrm{k}, 18-\mathrm{k}, 5 \mathrm{k}+1$ are in A.P

$$
\begin{aligned}
& \Rightarrow 2 \mathrm{~b}=\mathrm{a}+\mathrm{c} \text { if } \mathrm{a}, \mathrm{~b}, \mathrm{c} \text { are in A.P } \\
& \therefore \underbrace{3+k}_{a}, \underbrace{18-k}_{b}, \underbrace{5 k+1}_{c} \\
& 2 b=a+c \\
& \Rightarrow \quad 2(18-k)=3+k+5 k+1 \\
& 36-2 k=4+6 k \text {. } \\
& 6 k+2 k=36-4 \\
& 8 k=32 \\
& k=\frac{32}{8}=4
\end{aligned}
$$

Question 9.

Find x, y and z gave that the numbers x, $10, y, 24, z$ are in A.P.
Answer:
$\mathrm{x}, 10, \mathrm{y}, 24, \mathrm{z}$ are in A.P
$\mathrm{t}_{2}-\mathrm{t}_{1}=10-\mathrm{x}$
$\mathrm{d}=10-\mathrm{x} \ldots \ldots(1)$
$t_{3}-t_{2}=y-10$
$\mathrm{d}=\mathrm{y}-10$
$t_{4}-t_{3}=24-y$
$\mathrm{d}=24-\mathrm{y} \ldots$...(3)
$\mathrm{t}_{5}-\mathrm{t}_{4}=\mathrm{z}-24$
$\mathrm{d}=\mathrm{z}-24$
From (2) and (3) we get
$\mathrm{y}-10=24-\mathrm{y}$
$2 \mathrm{y}=24+10$
$2 \mathrm{y}=34$
$y=17$
From (1) and (2) we get
$10-x=y-10$
$-x-y=-10-10$
$-x-y=-20$
$x+y=20$
$x+17=20(y=17)$
$x=20-17=3$
From (1) and (4) we get
$z-24=10-x$
$z-24=10-3(x=3)$
$z-24=7$
$\mathrm{z}=7+24$
$\mathrm{z}=31$
The value of $x=3, y=17$ and $z=31$

Question 10.

In a theatre, there are 20 seats in the front row and 30 rows were allotted. Each successive row contains two additional seats than its front row. How many seats are there in the last row?
Solution:
$\mathrm{t}_{1}=\mathrm{a}=20$
$t_{2}=a+2=22$
$t_{3}=a+2+2=24 \Rightarrow d=2$
\therefore There are 30 rows.
$\mathrm{t}_{30}=\mathrm{a}+29 \mathrm{~d}$
$=20+29 \times 2$
$=20+58$
$=78$
\therefore There will be 78 seats in the last row.

Question 11.
The Sum of three consecutive terms that are in A.P. is 27 and their product is 288 . Find the three terms.
Answer:
Let the three consecutive terms be $a-d$, a and $a+d$
By the given first condition
$a-d+a+a+d=27$
$3 \mathrm{a}=27$
$\mathrm{a}=\frac{27}{3}=9$
Again by the second condition
$(a-d)(a)(a+d)=288$
$a\left(a^{2}-d^{2}\right)=288$
$9\left(81-d^{2}\right)=288(a=9)$
$81-\mathrm{d}^{2}=\frac{288}{9}$
$81-d^{2}=32$
$\therefore \mathrm{d}^{2}=81-32$
$=49$
$\mathrm{d}=\sqrt{49}= \pm 7$
When $\mathrm{a}=9, \mathrm{~d}=7$
$a+d=9+7=16$
$\mathrm{a}=9$
$a-d=9-7=2$
When $\mathrm{a}=9, \mathrm{~d}=-7$
$a+d=9-7=2$
$a=9$
$a-d=9-(-7)=9+7=16$
The three terms are $2,9,16$ (or) $16,9,2$

Question 12.

The ratio of 6 th and $8^{\text {th }}$ term of an A.P is $7: 9$. Find the ratio of $9^{\text {th }}$ term to $13^{\text {th }}$ term.
Solution:
$\frac{t_{6}}{t_{8}}=\frac{7}{9}$
$\frac{a+5 d}{a+7 d}=\frac{7}{9}$
$9 a+45 d=7 a+49 d$
$9 \mathrm{a}+45-7 \mathrm{~d}=7 \mathrm{a}+49 \mathrm{~d}$
$9 \mathrm{a}+45 \mathrm{~d}-7 \mathrm{a}-49 \mathrm{~d}=0$
$2 \mathrm{a}-4 \mathrm{~d}=0 \Rightarrow 2 \mathrm{a}=4 \mathrm{~d}$
$a=2 d$
Substitue $\mathrm{a}=2 \mathrm{~d}$ in

$$
\begin{aligned}
\frac{t_{9}}{t_{13}} & =\frac{a+8 d}{a+12 d} \\
& =\frac{2 d+8 d}{2 d+12 d} \\
& =\frac{10 d}{14 d} \\
& =\frac{5}{7} \\
\therefore \quad t_{9}: t_{13} & =5: 7 .
\end{aligned}
$$

Question 13.

In a winter season let us take the temperature of Ooty from Monday to Friday to be in A.P. The sum of temperatures from Monday to Wednesday is $0^{\circ} \mathrm{C}$ and the sum of the temperatures from Wednesday to Friday is $18^{\circ} \mathrm{C}$. Find the temperature on each of the five days.
Solution:
Let the five days temperature be $(a-d)$, $a, a+d, a+2 d, a+3 d$.
The three days sum $=a-d+a+a+d=0$
$\Rightarrow 3 \mathrm{a}=0 \Rightarrow \mathrm{a}=0$. (given)
$a+d+a+2 d+a+3 d=18$
$3 a+6 d=18$
$3(0)+6 d=18$
$6 \mathrm{~d}=18$
$\mathrm{d}=\frac{18}{6}=3$
\therefore The temperature of each five days is $\mathrm{a}-\mathrm{d}, \mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}, \mathrm{a}+3 \mathrm{~d}$
$0-3,0,0+3,0+2(3), 0+3(3)=-3^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 3^{\circ} \mathrm{C}, 6^{\circ} \mathrm{C}, 9^{\circ} \mathrm{C}$

Question 14.

Priya earned $\square 15,000$ in the first month. Thereafter her salary increased by $\square 1500$ per year. Her expenses are 13,000 during the first year and the expenses increases by will it take for her to save $\square 20,000$ per month.
Solution:

	Yearly Salary	Yearly expenses	Yearly savings
$1^{\text {st }}$ year	15000	13000	2000
$2^{\text {nd }}$ year	16500	13900	2600
$3^{\text {rd }}$ year	18000	14800	3200

We find that the yearly savings is in A.P with $\mathrm{a}_{1}=2000$ and $\mathrm{d}=600$.
We are required to find how many years are required to save 20,000 a year
$\mathrm{a}_{\mathrm{n}}=20,000$
$\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$20000=2000+(\mathrm{n}-1) 600$
$(\mathrm{n}-1) 600=18000$
$\mathrm{n}-1=\frac{18000}{600}=30$
$\mathrm{n}=31$ years

Ex 2.6

Question 1.

Find the sum of the following
(i) $3,7,11, \ldots \ldots$ up to 40 terms.
(ii) $102,97,92, \ldots \ldots \ldots$ up to 27 terms.
(iii) $6+13+20+\ldots \ldots \ldots+97$

Solution:
(i) $3,7,11, \ldots$ upto 40 terms.
$\mathrm{a}=3, \mathrm{~d}=\mathrm{t}_{2}-\mathrm{t}_{1}=7-3=4$
$\mathrm{n}=40$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$
$\mathrm{S}_{40}=\frac{20}{2}(2 \times 3+39 \mathrm{~d})$
$=20(6+39 \times 4)$
$=20(6+156)$
$=20 \times 162$
$=3240$
(ii) $102,97,952, \ldots$ up to 27 terms
$\mathrm{a}=102$,
$\mathrm{d}=\mathrm{t}_{2}-\mathrm{t}_{1}$
$=97-102=-5$
$\mathrm{n}=27$

$$
\begin{aligned}
& \mathrm{S}_{n}=\frac{n}{2}(2 a+(n-1) d) \\
&\left.\begin{array}{rl}
\mathrm{S}_{27} & =\frac{27}{2}(2 \times 102+26 \times-5) \\
& =\frac{27}{2}(74)^{37} \\
& =27 \times 37
\end{array}\right)=999 . \\
& \text { (iii) } 6+13+20+\ldots+97 \\
& \mathrm{a}=6, \mathrm{~d}=7,1=97
\end{aligned} \quad \begin{aligned}
n & =\frac{l-a}{d}+1 \\
& =\frac{97-6}{7}+1=\frac{91}{7}+1 \\
& =\frac{91+7}{7}=\frac{98}{7}=14 \\
\mathrm{~S}_{n} & =\frac{n}{2}(a+l)=R \mathrm{~S}, \mathrm{NCER} \\
\mathrm{~S}_{14} & =\frac{14}{2}(6+97) \\
& =7 \times 103=721
\end{aligned}
$$

Question 2.

How many consecutive odd integers beginning with 5 will sum to 480 ?
Answer:
5,7,9, 11, 13, ...
$\mathrm{S}_{\mathrm{n}}=480$
$a=5, d=2, S_{n}=480$

$$
\begin{gathered}
\mathrm{S}_{n}=\frac{n}{2}(2 a+(n-1) d) \\
480=\frac{n}{2}[2 \times 5+(n-1) 2] \\
=\frac{n}{2}[10+2 n-2] \\
480=\frac{n}{2}[8+2 n] \\
8 n+2 n^{2}=960 \\
2 \mathrm{n}^{2}+8 \mathrm{n}-960=0 \\
\Rightarrow \mathrm{n}^{2}+4 \mathrm{n}-480=0 \\
\Rightarrow \mathrm{n}^{2}+24 \mathrm{n}-20 \mathrm{n}-480=0 \\
\Rightarrow \mathrm{n}(\mathrm{n}+24)-20(\mathrm{n}+24)=0 \\
\Rightarrow(\mathrm{n}-20)(\mathrm{n}+24)=0 \\
\Rightarrow \mathrm{n}=20,-24
\end{gathered}
$$

No. of terms cannot be -ve.
\therefore No. of consecutive odd integers beginning with 5 will sum to 480 is 20 .

Question 3.

Find the sum of first 28 terms of an A.P. whose $\mathrm{n}^{\text {th }}$ term is $4 \mathrm{n}-3$.
Answer:
Number of terns (n) $=28$
$\mathrm{t}_{\mathrm{n}}=4 \mathrm{n}-3$
$\mathrm{t}_{1}=4(1)-3=4-3=1$
$\mathrm{t}_{2}=4(2)-3=8-3=5$
$\mathrm{t}_{3}=4(3)-3=12-3=9$
Here $\mathrm{a}=1, \mathrm{~d}=5-1=4$
$\mathrm{S}_{28}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$=\frac{28}{2}[2+(27)(4)]$
$=14[2+108]$
$=14 \times 110$
$=1540$
Sum of 28 terms $=1540$

Question 4.

The sum of first n terms of a certain series is given as $2 n 2-3 n$. Show that the series is an A.P. Solution:

Given $\mathrm{S}_{\mathrm{n}}=2 \mathrm{n}^{2}-3 \mathrm{n}$
$\mathrm{S}_{1}=2(1)^{2}-3(1)=2-3=-1$
$\Rightarrow \mathrm{t}_{1}=\mathrm{a}=-1$
$S_{2}=2\left(2^{2}\right)-3(2)=8-6=2$
$\mathrm{t}_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}=2-(-1)=3$
$\therefore \mathrm{d}=\mathrm{t}_{2}-\mathrm{t}_{1}=3-(-1)=4$
Consider $\mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}, \ldots \ldots .$.
$-1,-1+4,-1+2(4), \ldots \ldots \ldots$
$-1,3,7, \ldots$.
Clearly this is an A.P with $\mathrm{a}=-1$, and $\mathrm{d}=4$.

Question 5.

The $104^{\text {th }}$ term and 4th term of an A.P are 125 and 0 . Find the sum of first 35 terms.
Solution:
$\mathrm{t}_{104}=125$
$t_{4}=0$

$$
\begin{aligned}
& \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=\mathrm{t}_{\mathrm{n}} \\
& a+103 d=125 \\
& a+3 d={ }_{(-)} \\
&(1)-(2) \Rightarrow 100 d=125 \\
& d=\frac{125}{100}=\frac{5}{4} \\
& \text { Substitute } d=\frac{5}{4} \text { in }(2) \\
& a+3 \times \frac{5}{4}=0 \\
& a+\frac{15}{4}=0 \Rightarrow a=-\frac{15}{4} \\
& \therefore \mathrm{~S}_{n}=\frac{n}{2}(2 a+(n-1) d) \\
& \mathrm{S}_{35}=\frac{35}{2}\left(2 \times \frac{-15}{A_{2}}+34^{17} \times \frac{5}{A_{2}}\right) \\
&= \frac{35}{2}\left(\frac{-15}{2}+\frac{85}{2}\right) \\
&= \frac{35}{2}\left(\frac{70}{2}\right)=\frac{35}{2} \times 35 \\
&= \frac{1225}{2} \\
&= 612.5
\end{aligned}
$$

Question 6.

Find the sum of all odd positive integers less than 450.
Solution:
Sum of all odd positive integers less than 450 is given by
$1+3+5+\ldots+449$
$\mathrm{a}=1$
$\mathrm{d}=2$
$1=449$

$$
\begin{aligned}
\therefore \quad n=\frac{l-a}{d}+1 & =\frac{449-1}{2}+1 \\
& =\frac{448}{2}+1 \\
& =224+1=225 \\
\therefore \quad \mathrm{~S}_{n} & =\frac{n}{2}(a+l) \\
\mathrm{S}_{225} & =\frac{225}{2}(1+449) \\
& =\frac{225}{2} \times 450^{225} \\
& =225^{2}
\end{aligned}
$$

$=50625$
Another method:
Sum of all + ve odd integers $=n^{2}$.
We can use the formula $\mathrm{n}^{2}=225^{2}$
$=50625$

Question 7.

Find the sum of all natural numbers between 602 and 902 which are not divisible by 4 .
Answer:
Natural numbers between 602 and 902
603,604, ..., 901
$a=603,1=901, d=1$,

$$
\begin{aligned}
n=\frac{l-a}{d}+1 & =\frac{901-603}{1}+1 \\
& =298+1=299 \\
\mathrm{~S}_{n} & =\frac{n}{2}(a+l) \\
\mathrm{S}_{299} & =\frac{299}{2}(603+901) \\
& =\frac{299}{2} \times 1504 \\
& =224848
\end{aligned}
$$

Sum of all natural numbers between 602 and 902 which are not divisible by 4 .
$=$ Sum of all natural numbers between 602 and 902
$=$ Sum of all natural numbers between 602 and 902 which are divisible by 4 .
$1=902-2=900$
To make 602 divisible by 4 we have to add 2 to 602 .
$\therefore 602+2=604$ which is divisible by 4 .
To make 902 divisible by 4 , subtract 2 from 902 .
$\therefore 900$ is the last number divisible by 4 .

$$
\begin{aligned}
a=604, l=900, d & =4, n=\frac{l-a}{d}+1 \\
4 \frac{150}{\frac{602}{600}} & 4 \frac{225}{2} \\
n=\frac{900-604}{4}+1 & =\frac{\frac{296}{4}+1}{2} \\
& =74+1=75 \\
\mathrm{~S}_{n} & =\frac{n}{2}(a+l) \\
\mathrm{S}_{75} & =\frac{75}{2}(604+900) \\
& =\frac{75}{2}(1504) \\
& =56400
\end{aligned}
$$

Sum of all natural numbers between 602 and 902 which are not divisible 4.
$=224848-56400$
$=168448$

Question 8.

Raghu wish to buy a Laptop. He can buy it by paying $\square 40,000$ cash or by making 10 installments as $\square 4800$ in the first month, $\square 4750$ in the second month, $\square 4700$ in the third month and so on. If he pays the money in this fashion, Find
(i) Total amount paid in 10 installments.
(ii) How much extra amount that he pay in installments.

Answer:
(i) Amount paid in 10 installments
$4800+4750+4700+\ldots \ldots \ldots \ldots \ldots . .10$
Here $\mathrm{a}=4800 ; \mathrm{d}=-50 ; \mathrm{n}=10$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{10}=\frac{10}{2}[2 \times 4800+9(-50)]$
$=\frac{10}{2}[9600-450]$
$=5$ [9150]
$=45750$
Amount paid in 10 installments
$=\square 45750$
(ii) Extra amount paid $=$ amount paid in 10 installment - cost of the laptop
$=\square 45750-40,000$
$=\square 5750$
(i) Amount paid in 10 installments $=\square 45750$
(ii) Difference in payment $=\square 5750$

Question 9.

A man repays a loan of $\square 65,000$ by paying $\square 400$ in the first month and then increasing the payment by $\square 300$ every month. How long will it take for him to clear the loan?
Solution:
Loan Amount $=\square 65,000$
Repayment through installments
$400+700+1000+1300+\ldots$
$\mathrm{a}=400$
$\mathrm{d}=300$
$\mathrm{S}_{\mathrm{n}}=65000$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$
$=65000$
$\frac{n}{2}(2 \times 400+(\mathrm{n}-1) 300)=65000$
$\mathrm{n}(800+300 \mathrm{n}-300)=130000$
$\mathrm{n}(500+300 \mathrm{n})=130000$
$500 n+300 n^{2}=130000$
$3 \varnothing \varnothing n^{2}+5 \varnothing \varnothing n=1300 \varnothing \varnothing$

$$
3 n^{2}+5 n-1300=0
$$

$(n-20)(3 n+65)=0$ $\frac{-60}{3} \quad \frac{65}{3}$
$n=20, n=\frac{-65}{3}$ $-20 \quad \frac{65}{3}$

$$
\therefore n=20
$$

Number of terms should be (+ve) and cannot be (-ve) or fractional number.
\therefore He will take 20 months to clear the loans.

Question 10.

A brick staircase has a total of 30 steps. The bottom step requires 100 bricks. Each successive step requires two bricks less than the previous step.
(i) How many bricks are required for the top most step?
(ii) How many bricks are required to build the stair case?

Answer:
Total number of steps $=30$
$\therefore \mathrm{n}=30$
Number of bricks for the bottom $=100$
$\mathrm{a}=100$
2 bricks is less for each step
(i) Number of bricks required for the top most step
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{t}_{30}=100+29(-2)$
$=100-58$
$=42$
(ii) Number of bricks required
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{30}=\frac{30}{2}[200+29(-2)]$
$=15[200-58]$
$=2130$
(i) Number of bricks required for the top most step $=42$ bricks
(ii) Number of bricks required $=2130$

Question 11.

If $S_{1}, S_{2}, S_{3}, \ldots, S_{m}$ are the sums of n terms of m A.P.'s whose first terms are $1,2,3, \ldots, m$ and whose common differences are $1,3,5, \ldots,(2 \mathrm{~m}-1)$ respectively, then show that $\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}+\ldots .+\mathrm{Sm}=\frac{1}{2} \mathrm{mn}(\mathrm{mn}+1)$.
Solution:

First term	d	No. of terms	Sum of n terms
1	1	n	$\mathrm{~S}_{1}=\frac{n}{2}(2 \times 1+(n-1) 1)$
2	3	n	$\mathrm{~S}_{2}=\frac{n}{2}(2 \times 2+(n-1) 3)$
3	5	n	
\cdot	\cdot	\cdot	.
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
m	$(2 m-1)$	n	$\mathrm{~S}_{m}=\frac{n}{2}[2 m+(n-1)(2 m-1)]$

$$
\mathrm{S}_{1}=\frac{n}{2}(2+(n-1))=\frac{n}{2}(n+1)
$$

$$
\begin{aligned}
\mathrm{S}_{2} & =\frac{n}{2}(4+3 n-3)=\frac{n}{2}(3 n+1) \\
\mathrm{S}_{3} & =\frac{n}{2}(6+5 n-5)=\frac{n}{2}(5 n+1) \\
\mathrm{S}_{m} & =\frac{n}{2}[2 m+2 m n-2 m-n+1] \\
& =\frac{n}{2}(n(2 m-1)+1) \\
\therefore \mathrm{S}_{1} & +\mathrm{S}_{2}+\mathrm{S}_{3}+\ldots+\mathrm{S}_{m} \\
& =\frac{n}{2}[n+3 n+5 n+\ldots(2 m-1) n+m \times 1] \\
& =\frac{n}{2}[n(1+3+5+\ldots+(2 m-1)+m] \\
& =\frac{n}{2}\left[n \times \frac{m}{2}(2 m-\not \subset+\not 2)+m\right] \\
& =\frac{n}{2}\left[m^{2} n+m\right] \\
& =\frac{1}{2} m n(m n+1)
\end{aligned}
$$

Hence proved.

Question 12.
Find the sum

$$
\left[\frac{a-b}{a+b}+\frac{3 a-2 b}{a+b}+\frac{5 a-3 b}{a+b}+\ldots \text { to } 12 \text { terms }\right]
$$

Solution:

$$
=\frac{1}{a+b}[(a-b)+(3 a-2 b)+(5 a-3 b)+\ldots
$$

$$
\text { Here } a=\frac{a-b}{a+b}, d=t_{2}-t_{1}
$$

$$
=\frac{3 a-2 b}{a+b}-\frac{a-b}{a+b}
$$

$$
d=\frac{2 a-b}{a+b}
$$

$$
\therefore \quad \mathrm{S}_{n}=\frac{n}{2}(2 a+(n-1) d)
$$

$$
\mathrm{S}_{12}=\frac{12}{2}\left[2\left(\frac{a-b}{a+b}\right)+11 \times\left(\frac{2 a-b}{a+b}\right)\right]
$$

$$
\begin{aligned}
& =6\left[\frac{2 a-2 b+2}{a+l}\right. \\
& =6\left[\frac{24 a-13 b}{a+b}\right]
\end{aligned}
$$

Ex 2.7

Question 1.

Which of the following sequences are in G.P?
(i) $3,9,27,81, \ldots \ldots \ldots$
(ii) $4,44,444,4444, \ldots \ldots \ldots$
(iii) $0.5,0.05,0.005, \ldots \ldots$.
(iv) $\frac{1}{3}, \frac{1}{6}, \frac{1}{12} \ldots \ldots \ldots$
(v) $1,-5,25,-125, \ldots \ldots$
(vi) $120,60,30,18, \ldots \ldots$
(vii) $16,4,1, \frac{1}{4}, \ldots \ldots$

Solution:
(i) $3,9,27,81$
$\mathrm{r}=$ Common ratio

$$
r=\frac{t_{2}}{t_{1}}=\frac{t_{3}}{t_{2}} \text { in G.P }
$$

Here $\frac{t_{2}}{t_{1}}=\frac{9}{3}=3$

$$
\frac{t_{3}}{t_{2}}=\frac{27}{9}=3
$$

\therefore It is a G.P.
(ii) $4,44,444,4444, \ldots \ldots$.

$$
\begin{aligned}
& r=\frac{t_{2}}{t_{1}}=\frac{44}{4}=11 \\
& r=\frac{t_{3}}{t_{2}}=\frac{444}{44}=\frac{111}{11}
\end{aligned}
$$

\therefore It is not a G.P.
(iii) $0.5,0.05,0.005, \ldots$

$$
\begin{aligned}
r=\frac{t_{2}}{t_{1}}=\frac{0.05}{0.5}=\frac{0.05 \times 100}{0.5 \times 100} \\
=\frac{5}{50}=\frac{1}{10}
\end{aligned}
$$

$$
\begin{aligned}
r=\frac{t_{3}}{t_{2}}=\frac{0.005}{0.05} & =\frac{0.005 \times 1000}{0.05 \times 1000} \\
& =\frac{5}{50}
\end{aligned}=\frac{1}{10} .
$$

\therefore It is a G.P.
(iv) $\frac{1}{3}, \frac{1}{6}, \frac{1}{12} \ldots$

$$
\begin{aligned}
r=\frac{t_{2}}{t_{1}}=\frac{\frac{1}{6}}{\frac{1}{3}}=\frac{1}{\not 6_{2}} \times \frac{\not p}{1}=\frac{1}{2} \\
r=\frac{t_{3}}{t_{2}}=\frac{\frac{1}{12}}{\frac{1}{6}}=\frac{1}{12_{2}} \times \frac{6}{1}=\frac{1}{2} \\
r=\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

\therefore It is a G.P.
(v) $1,-5,25,-125$

$$
\begin{aligned}
r=\frac{t_{2}}{t_{1}} & =\frac{-5}{1}=-5 \\
r= & \frac{t_{3}}{t_{2}}=\frac{25}{-5}=-5 \\
& -5=-5
\end{aligned}
$$

\therefore It is a G.P
(vi) $120,60,30,18, \ldots$
$r=\frac{t_{2}}{t_{1}}=\frac{t_{3}}{t_{2}}=\frac{t_{4}}{t_{3}}$
Here r is not equal i.e $\frac{60}{120}=\frac{30}{60} \neq \frac{18}{30}$
\therefore It is not a G.P
(vii) $16,4,1, \frac{1}{4}, \ldots$

$$
\begin{aligned}
& r=\frac{t_{2}}{t_{1}}=\frac{4}{16}=\frac{1}{4} \\
& r=\frac{t_{3}}{t_{2}}=\frac{1}{4} \\
& r=\frac{1}{4}=\frac{1}{4}
\end{aligned}
$$

\therefore It is a G.P

Question 2.

Write the first three terms of the G.P. whose first term and the common ratio are given below.
(i) $\mathrm{a}=6, \mathrm{r}=3$
(ii) $\mathrm{a}=\sqrt{2}, \mathrm{r}=\sqrt{2}$
(iii) $\mathrm{a}=1000, \mathrm{r}=\frac{2}{5}$

Solution:
(i) $a=6, r=3$
$\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$\mathrm{t}_{1}=\mathrm{ar}^{1-1}=\mathrm{ar}^{0}=\mathrm{a}=6$
$\mathrm{t}_{2}=\mathrm{ar}^{2-1}=\mathrm{ar}^{1}=6 \times 3=18$
$\mathrm{t}_{3}=\mathrm{ar}^{3-1}=\mathrm{ar}^{2}=6 \times 3^{2}=54$
\therefore The 3 terms are $6,18,54, \ldots$.
(ii) $a=\sqrt{2}, r=\sqrt{2}$

$$
\begin{aligned}
t_{n} & =a r^{n-1} \\
t_{1}=a r^{1-1}=a r^{\circ} & =\sqrt{2} \times 1=\sqrt{2} \\
t_{2}=a r^{2-1}=a r^{1} & =\sqrt{2} \times \sqrt{2}=2 \\
t_{3}=a r^{3-1}=a r^{2} & =\sqrt{2} \times(\sqrt{2})^{2} \\
& =\sqrt{2} \times 2=2 \sqrt{2}
\end{aligned}
$$

\therefore The 3 terms are $\sqrt{2}, 2,2 \sqrt{2}, \ldots$
(iii) $a=1000, r=\frac{2}{5}$

$$
\begin{aligned}
& t_{n}=a r^{n-1} \\
& t_{1}=a r^{1-1}=a r^{0}=1000 \times 1=1000 \\
& t_{2}=a r^{2-1}=a r=1000^{200} \times \frac{2}{8}=400 \\
& t_{3}=a r^{3-1}=a r^{2}=1000\left(\frac{2}{5}\right)^{2} \\
& M O D E L P A P E R
\end{aligned}
$$

The 3 terms are $1000,400,160, \ldots \ldots \ldots \ldots$.
Question 3.
In a G.P. $729,243,81, \ldots$ find t_{7}.
Solution:
G.P $=729,243,81 \ldots \ldots$
$\mathrm{t}_{7}=$?

$$
\begin{aligned}
t_{n}=a r^{n-1}, \text { here } a & =729, r=\frac{t_{2}}{t_{1}} \\
r & =\frac{243}{729}=\frac{1}{3} \\
\therefore t_{7}=729\left(\frac{1}{3}\right)^{7-1} & =729 \times\left(\frac{1}{3}\right)^{6} \\
& =729 \times \frac{1}{729} \\
& =1
\end{aligned}
$$

Question 4.

Find x so that $\mathrm{x}+6, \mathrm{x}+12$ and $\mathrm{x}+15$ are consecutive terms of a Geometric Progression.
Answer:
$\frac{t_{2}}{t_{1}}=\frac{x+12}{x+6}, \frac{t_{3}}{t_{2}}=\frac{x+15}{x+12}$
Since it is a G.P.
$\frac{x+12}{x+6}=\frac{x+15}{x+12}$
$(\mathrm{x}+12)^{2}=(\mathrm{x}+6)(\mathrm{x}+15)$
$x^{2}+24 x+144=x^{2}+21 x+90$
$3 x=-54 \Rightarrow x=\frac{-54}{3}=-18$

Question 5.

Find the number of terms in the following G.P.
(i), $4,8,16, \ldots, 8192$
(ii) $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots \ldots \frac{1}{2187}$

Solution:
(i) $4,8,16, \ldots \ldots 8192$

$$
\begin{aligned}
a & =4 \\
r & =\frac{8}{4}=2 \\
t_{n} & =8192 \\
t_{n} & =a r^{n-1} \\
8192 & =4 \times(2)^{n-1} \\
4 \times 2^{n-1} & =8192^{2048} \\
2^{n-1} & =2048 \\
2^{n-1} & =2^{11} \\
n-1 & =11 \\
n & =11+1=12
\end{aligned}
$$

$\therefore \quad$ No. of terms $=12$
(ii) $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots, \frac{1}{2187}$

Here $a=\frac{1}{3}, r=\frac{\frac{9}{\frac{9}{3}}}{\frac{1}{3}}=\frac{1}{9_{3}} \times \frac{\not \partial}{1}=\frac{1}{3}$

$$
\begin{aligned}
t_{n} & =a r^{n-1} \\
\frac{1}{3} \times\left(\frac{1}{3}\right)^{n-1} & =\frac{1}{2187}
\end{aligned}
$$

	Hint:
3	1729
3	243
3	81
3	27
3	9
3	3
	1

$$
\begin{aligned}
\left(\frac{1}{3}\right)^{n-1} & =\frac{1}{2187_{729}} \times \not \approx \\
& =\frac{1}{729}
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{1}{3}\right)^{n-1}=\frac{1}{3^{6}} & =\left(\frac{1}{3}\right)^{6} \\
n-1 & =6 \\
n=6+1 & =7
\end{aligned}
$$

\therefore No. of terms $=7$

Question 6.

In a G.P. the $9^{\text {th }}$ term is 32805 and $6^{\text {th }}$ term is 1215 . Find the 12 th term.
Solution:
In a G.P
$\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$t_{9}=32805$
$\mathrm{t}_{6}=1215$
$\mathrm{t}_{12}=$?
Let

$\mathrm{t}_{9}=\mathrm{ar}^{8}=32805$

$$
\begin{equation*}
\mathrm{t}_{6}=a \mathrm{a}^{5}=1215 \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{(1)}{(2)}=\frac{A r^{8}}{A r^{5}}=\frac{32805}{1215}
\end{aligned}
$$

$$
\begin{aligned}
& =5 \times 177147 \\
& =885735
\end{aligned}
$$

Question 7.

Find the 10 th term of a G.P. whose $8^{\text {th }}$ term is 768 and the common ratio is 2.
Answer:
Here $\mathrm{r}=2, \mathrm{t}_{8}=768$
$\mathrm{t}_{8}=768\left(\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}\right)$
a. $r^{8-1}=768$
ar $^{7}=768$
$10^{\text {th }}$ term of a G.P. $=$ a.r 10^{-1}
$=a r^{9}$
$=\left(a^{7}\right) \times\left(r^{2}\right)$
$=768 \times 2^{2}($ from 1$)$
$=768 \times 4=3072$
$\therefore 10^{\text {th }}$ term of a G.P. $=3072$

Question 8.

If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. then show that $3^{\mathrm{a}}, 3^{\mathrm{b}}, 3^{\mathrm{c}}$ are in G.P.
Solution:
If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P
$t_{2}-t_{1}=t_{3}-t_{2}$
$\mathrm{b}-\mathrm{a}=\mathrm{c}-\mathrm{b}$
$2 \mathrm{~b}=\mathrm{c}+\mathrm{a}$

To prove that $3^{\mathrm{a}}, 3^{\mathrm{b}}, 3^{\mathrm{c}}$ are in G.P
$\Rightarrow 3^{2 \mathrm{~b}}=3^{\mathrm{c}+\mathrm{a}}+\mathrm{a}$ [Raising the power both sides]
$\Rightarrow 3^{b} .3^{b}=3^{c} .3^{a}$
$\Rightarrow \frac{3^{b}}{3^{a}}=\frac{3^{c}}{3^{b}}$
$\Rightarrow \frac{t_{2}}{t_{1}}=\frac{t_{3}}{t_{1}}$
\Rightarrow Common ratio is same for $3^{\mathrm{a}}, 3^{\mathrm{b}}, 3^{\mathrm{c}}$
$\Rightarrow 3^{\mathrm{a}}, 3^{\mathrm{b}}, 3^{\mathrm{c}}$ forms a G.P
\therefore Hence it is proved .

Question 9.

In a G.P. the product of three consecutive terms is 27 and the sum of the product of two terms taken at a time is $\frac{57}{2}$. Find the three terms.
Solution:
Let the three consecutive terms in a G.P are $\frac{a}{r}$, a, ar.
Their Product $=\frac{a}{r} \times \mathrm{a} \times \mathrm{ar}=27$
$a^{3}=27=3^{3}$
$\mathrm{a}=3$
Sum of the product of terms taken two at a time is $\frac{57}{2}$

$$
\begin{aligned}
\frac{a}{r} \times a+a \times a r+a r \times \frac{a}{r} & =\frac{57}{2} \quad \overbrace{1} \\
\frac{a^{2}}{r}+a^{2} r+a^{2} & =\frac{57}{2} \quad \overbrace{\frac{-A^{2}}{6_{3}} \frac{-y^{3}}{b_{2}}}^{36} \\
3^{2}\left(\frac{1}{r}+r+1\right) & =\frac{57}{2} \\
\frac{1+r^{2}+r}{r} & =\frac{57}{2} \times \frac{1}{9}=\frac{57}{18} \\
18+18 r^{2}+18 r & =57 r \\
18 r^{2}+18 r-57 r+18 & =0 \\
18 r^{2}-39 r+18 & =0 \div 3
\end{aligned}
$$

$$
\begin{aligned}
6 r^{2}-13 r+6 & =0 \\
\left(r-\frac{2}{3}\right)\left(r-\frac{3}{2}\right) & =0 \\
r & =\frac{2}{3}, \frac{3}{2} \\
\text { If } a=3, r & =\frac{2}{3}
\end{aligned}
$$

\therefore The three numbers are $\frac{3}{\frac{2}{3}}, 3,3 \times \frac{2}{3}$
(or) $3 \times \frac{2}{3}, 3, \not 8 \times \frac{2}{\not x}$
$\frac{9}{2}, 3,2$
If $a=3, r=\frac{3}{2}$, the three numbers are

$$
\begin{aligned}
\frac{a}{r}, a, a r & =\frac{3}{3}, 3,3 \times \frac{3}{2} \\
& =\frac{6}{3}, 3, \frac{9}{2} \\
& =2,3, \frac{9}{2}
\end{aligned}
$$

Question 10.

A man joined a company as Assistant Manager. The company gave him a starting salary of $\square 60,000$ and agreed to increase his salary 5% annually. What will be his salary after 5 years?
Solution:
Starting salary $=\square 60,000$
Increase per year = 5\%
\therefore At the end of 1 year the increase
$=60,0,00 \times \frac{5}{100}$
$\square 3000$
\therefore At the end of first year his salary
$=\square 60,000+3000$

I year salary $=\square 63,000$
II Year increase $=63000 \times \frac{5}{100}$
At the end of II year, salary
$=63000+3150$
$=\square 66150$
III Year increase $=66150 \times \frac{5}{100}$
$=3307.50$
At the end of III year, salary $=66150+3307.50$
$=\square 69457.50$
IV year increase $=69457.50 \times \frac{5}{100}$
$=\square 3472.87$
At the end of IV year, salary $=69457.50+$

$$
3472.87
$$

$$
=72930.37
$$

V year increase $=₹ 72930.37 \times \frac{5}{100}$
$=$ ₹ 3646.51
At the end of V year, salary $=72930.37+$
3646.51
$=76576.88$
$=₹ 76577$

Question 11.

Sivamani is attending an interview for a job and the company gave two offers to him. Offer A: 20,000 to start with followed by a guaranteed annual increase of 3% for the first 5 years.
Offer B: $\square 22,000$ to start with followed by a guaranteed annual increase of 3% for the first 5 years.
What is his salary in the 4th year with respect to the offers A and B?
Solution:
Offer A
Starting salary $\square 20,000$
Annual increase 6\%

$$
\text { i.e. } \quad \begin{aligned}
& ₹ 0,000 \times \frac{6}{100} \\
& =₹ 1200
\end{aligned}
$$

At the end of I year salary $=20000+1200$

$$
=₹ 21200
$$

II year increase $=212 \rho 0 \times \frac{6}{100}$

$$
=₹ 1272
$$

At the end of II year salary

$$
=21200+1272=22472
$$

III year increase $=22472 \times \frac{6}{100}=1348.32$
At the end of
III year ,salary $=22472+1348=23820$
\therefore IV year salary $=\square 23820$
Offer B
Starting salary $=\square 22,000$

Annual increase $=3 \%=\frac{3}{100}$
I year, increase $=22000 \times \frac{3}{100}=₹ 660$
At the end of
I year, salary $=22000+660$

$$
=₹ 22660
$$

II year increase $=22660 \times \frac{3}{10 \varnothing}$

$$
=₹ 679.8
$$

At the end of
II year, salary $=₹ 23339.80$
III year increase $=23339.8 \times \frac{3}{100}$

$$
=₹ 700
$$

At the end of
III year, salary $=₹ 24039.80$
\therefore IV year salary $=₹ 24040$
Salary as per Option A $=\square 23820$
Salary as per Option B $=\square 24040$
\therefore Option B is better.

Question 12.

If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three consecutive terms of an A.P. and $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are three consecutive terms of a G.P. then prove that $\mathrm{x}^{\mathrm{b}-\mathrm{c}} \times \mathrm{y}^{\mathrm{c}-\mathrm{a}} \times \mathrm{z}^{\mathrm{a}-\mathrm{b}}=1$.
Solution:
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three consecutive terms of an AP.
\therefore Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be $\mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}$ respectively
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ are three consecutive terms of a GP.
\therefore Assume $\mathrm{x}, \mathrm{y}, \mathrm{z}$ as $\mathrm{x}, \mathrm{x} . \mathrm{r}, \mathrm{x} . \mathrm{r}^{2}$ respectively
PT: $\mathrm{x}^{\mathrm{b}-\mathrm{c}}, \mathrm{y}^{\mathrm{c}-\mathrm{a}}, \mathrm{z}^{\mathrm{a}-\mathrm{b}}=1$
Substituting (1) and (2) in LHS, we get
LHS $=x^{a+d-a-2 d} \times\left(x r^{a+2 d-a} \times\left(x^{2}\right)^{2-a-d}\right.$
$=(\mathrm{x})^{-\mathrm{d}} \cdot(\mathrm{xr})^{2 \mathrm{~d}}\left(\mathrm{xr}^{2}\right)^{-\mathrm{d}}$
$=\frac{1}{x^{d}} \times \mathrm{x}^{2 \mathrm{~d}} . \mathrm{r}^{2 \mathrm{~d}} \times \frac{1}{x^{d} r^{2 d}}=1=$ RHS

Ex 2.8

Question 1.
Find the sum of first n terms of the G.P.
(i) $5,-3, \frac{9}{5},-\frac{27}{25}, \ldots \ldots \ldots$
(ii) $256,64,16, \ldots \ldots \ldots$

Solution:
(i) $5,-3, \frac{9}{5}, \frac{-27}{25}, \ldots \ldots \ldots$

$$
\begin{aligned}
\text { Here } a & =5, r=\frac{t_{2}}{t_{1}}=\frac{-3}{5}<1 \\
\mathrm{~S}_{n} & =a\left(\frac{1-r^{n}}{1-r}\right) \\
=5\left[\frac{1-\left(\frac{-3}{5}\right)^{n}}{1-\left(\frac{-3}{5}\right)}\right] & =5\left[\frac{1-\left(\frac{-3}{5}\right)^{n}}{1-\frac{-3}{5}}\right] \\
=5 \frac{\left[1-\left(\frac{-3}{5}\right)^{n}\right]}{\frac{8}{5}} & =5 \times \frac{5}{8}\left(1-\left(\frac{-3}{5}\right)^{n}\right) \\
\therefore \mathrm{S}_{n} & =\frac{25}{8}\left(1-\left(\frac{-3}{5}\right)^{n}\right)
\end{aligned}
$$

$$
a=256
$$

$$
r=\frac{64}{256}=\frac{4}{16}=\frac{1}{4}<1
$$

$$
\mathrm{S}_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

$$
=256\left(\frac{1-\left(\frac{1}{4}\right)^{n}}{1-\frac{1}{4}}\right)
$$

$$
256 \frac{\left(1-\left(\frac{1}{4}\right)^{n}\right)}{3}
$$

$$
=\quad \frac{3}{4}
$$

$$
=\frac{1024}{3}\left(1-\left(\frac{1}{4}\right)^{n}\right)
$$

Question 2.
Find the sum of first six terms of the G.P. $5,15,45, \ldots$
Solution:
G.P. $=5,15,45,15$

$$
\begin{aligned}
n=6, a=5, r & =\frac{15}{5}=3>1 \\
\therefore \quad \mathrm{~S}_{n} & =a \frac{\left(r^{n}-1\right)}{r-1} \\
\mathrm{~S}_{6} & =5\left(\frac{3^{6}-1}{3-1}\right) \\
=5 \frac{\left(3^{6}-1\right)}{2} & =\frac{5}{2}(729-1) \\
& =\frac{5}{2} \times 728=5 \times 364 \\
& =1820
\end{aligned}
$$

Question 3.

Find the first term of the GP. whose common ratio 5 and whose sum to first 6 terms is 46872 .
Solution:
Common ratio, $r=5$
$\mathrm{S}_{6}=46872$
$\therefore \quad \frac{a\left(r^{6}-1\right)}{r-1}=46872$
$\begin{array}{ll}\Rightarrow & \mathrm{S}_{6}=\frac{a\left(5^{6}-1\right)}{5-1}=46872 \\ \Rightarrow & a=\frac{46872 \times 4}{[25 \times 25 \times 25-1]}\end{array}$
$\Rightarrow \quad a=\frac{187488}{15624}=12$
\Rightarrow first term $=12$

Question 4.

Find the sum to infinity of (i) $9+3+1+\ldots$.
(ii) $21+14+\frac{28}{3}+\ldots$

Solution:
(i) $9+3+1+\ldots$
$a=9, r=\frac{3}{9}=\frac{1}{3}<1$

$$
\mathrm{S}_{\infty}=\frac{a}{1-r}=\frac{9}{1-\frac{1}{3}}
$$

$=\frac{\frac{9}{3-1}}{3}=\frac{\frac{9}{2}}{3}=9 \times \frac{3}{2}=\frac{27}{2}$
(ii) $21+14+\frac{28}{3}+\ldots$

Here $a=21, r=\frac{14}{21}=\frac{2}{3}$

$$
\mathrm{S}_{\infty}=\frac{a}{1-r}=\frac{21}{1-\frac{2}{3}}=\frac{21}{\frac{3-2}{3}}
$$

$$
\begin{aligned}
&=\frac{21}{\frac{1}{3}}=21 \times 3=63 \\
& 3 \text { MODELPAPERS, NCERT BOOKS, EXEMPLAR C OTHER PDF } \\
& \mathrm{S}_{\infty}= 63
\end{aligned}
$$

Question 5.

If the first term of an infinite G.P. is 8 and its sum to infinity is $\frac{32}{3}$ then find the common ratio. Solution:
$a=8$
$\mathrm{S}_{\infty}=\frac{32}{3} \Rightarrow \frac{a}{1-r}=\frac{32}{3}$

$$
\frac{8}{1-r}=\frac{32}{3}
$$

$$
32(1-r)=24
$$

$$
1-r=\frac{24}{32}=\frac{6}{8}=\frac{3}{4}
$$

$$
-r=\frac{3}{4}-1=\frac{3-4}{4}
$$

$$
-r=\frac{-1}{4} \Rightarrow r=\frac{1}{4}
$$

Question 6.
Find the sum to n terms of the series
(i) $0.4+0.44+0.444+\ldots$ to n terms
(ii) $3+33+333+\ldots$ to n terms

Solution:
(i) $0.4+0.44+0.444+\ldots$ to n terms
$=4(0.1+0.11+0.111+\ldots$ to n terms $)$
$=\frac{4}{9}(0.9+0.99+0.999+\ldots$ to n terms $)$

$$
\begin{aligned}
& \left.=\frac{4}{9}(1-0.1)+(1-0.01)+(1-0.001)+\ldots \mathrm{n} \text { terms }\right) \\
& =\frac{4}{9}(1+1+1+\ldots n \text { terms })-\left(0.1+0.1^{2}+0.1^{3}+\right. \\
& \ldots n \text { terms }) \\
& =\frac{4}{9}\left[n-0.1\left[\frac{\left.1-(0.1)^{n}\right]}{1-0.1}\right] \begin{array}{l}
\mathrm{G} . \mathrm{P}
\end{array}\right. \\
& \begin{array}{l}
a=0.1 \\
r=0.1
\end{array} \\
& =\frac{4}{9}\left[n-\frac{1}{10}\left[\frac{\left.1-\left(\frac{1}{10}\right)^{n}\right]}{\left.\frac{9}{10}\right] \quad \mathrm{S}_{n}=a \frac{\left(1-r^{n}\right)}{1-r}}\right.\right. \\
& =\frac{4}{9}\left[n-\frac{1}{9}\left[1-\left(\frac{1}{10}\right)^{n}\right] \quad\right. \\
& =\frac{4}{9} n-\frac{4}{81}\left(1-\left(\frac{1}{10}\right)^{n}\right]
\end{aligned}
$$

(ii) $3+33+333+\ldots$ to n terms
$=3(1+11+111+\ldots .$. . to n terms $)$
$=\frac{3}{9}(9+99+999+\ldots$ to n terms $)$
$\frac{1}{3}=[(10-1)+(100-1)+(1000-1)+\ldots$ to n terms $]$
$=\frac{1}{3}[(10+100+1000+.)+.(-1) \mathrm{n}]$
$=\frac{1}{3}\left(\frac{10\left(10^{n}-1\right)}{9}-n\right)\left[\begin{array}{rl}\text { Hint: } \\ \text { Here } r & =10>1 \\ a & =10\end{array} \quad \begin{array}{rl}\mathrm{S}_{n} & =a \frac{\left(r^{n}-1\right)}{r-1} \\ & =\frac{10\left(10^{n}-1\right)}{9}\end{array}\right.$

Question 7.

Find the sum of the Geometric series

$$
3+6+12+\ldots \ldots+1536
$$

Solution:
$3+6+12+\ldots \ldots+1536$
Here $\mathrm{a}=3$

$$
\begin{array}{rlrl}
\begin{aligned}
& \text { Hint: } \\
& t_{n}=1536 \\
& a r^{n-1}=1536 \\
& \not x(2)^{n-1}=1536^{512} \\
& 2^{n-1}=512 \\
& 2^{n-1}=2^{9} \\
& n-1=9 \\
& n=10
\end{aligned} \\
\mathrm{~S}_{n} & =\frac{a\left(r^{n}-1\right)}{(r-1)} \\
& & \mathrm{S}_{10} & =\frac{3\left(2^{10}-1\right)}{2-1} \\
& =3(1024-1) \\
& =3 \times 1023=3069
\end{array}
$$

Question 8.

Kumar writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with the instruction that they continue the process similarly. Assuming that the process is unaltered and it costs $\square 2$ to mail one letter, find the amount spent on postage when 8th set of letters is mailed.

Solution:
Kumar (1) 2×4
Cost of posting $1^{\text {st }}$ set of Letters.
Cost of posting $2^{\text {nd }}$ set of letters

$$
\begin{align*}
& 2^{(1)} \times 4+2 \times 4+2 \times 4+2 \times 4 \tag{4}\\
= & 2(4 \times 4)=2 \times 4^{2}
\end{align*}
$$

Cost of posting $3^{\text {rd }}$ set of letters

$$
\begin{align*}
& \quad(5) \quad(6) \quad(7) \quad \text { (8) } \tag{20}\\
= & 2 \times 4+2 \times 4+2 \times 4+2 \times 4+2 \times 4+\ldots .+2 \times 4 \\
= & 2 \times\left(4 \times 4^{2}\right)=2 \times 4^{3} \\
\therefore & 2 \times 4+2 \times 4^{2}+2 \times 4^{3}+\ldots 2 \times 4^{8}= \\
& \text { 1st } \quad \text { nd } \quad 3 \text { rd } \quad \ldots .8 \text { th }
\end{align*}
$$

Amount spent
$\left[a+a r+a r^{2}+\ldots a r^{n-1}\right]$
$=4\left[2+2 \times 4+2 \times 42 \div+2 \times 4^{7}\right]$
$=4\left[\mathrm{~S}_{\mathrm{n}}\right]$ Here $\mathrm{n}=8, \mathrm{r}=4$
It is a G.P
Sum of the G.P $=\frac{a\left(r^{n}-1\right)}{r-1}$ if $r>1$

$$
\begin{aligned}
S_{n}=S_{8} & =2\left(\frac{4^{8}-1}{4-1}\right) \\
& =2\left(\frac{65536-1}{3}\right) \\
& =2\left(\frac{65535}{3}\right)=\frac{131070}{3} \\
& =43690
\end{aligned}
$$

\therefore Cost of postage after posting 8th set of letters
$=4 \times 43690=\square 174760$

Question 9.

Find the rational form of the number $0 . \overline{123}$
Solution:
Let $\mathrm{x}=0.123123123 \ldots \ldots \ldots \Rightarrow \mathrm{x}=0 . \overline{123}$
Multiplying 1000 on both rides
$1000 \mathrm{x}=123.123123 \ldots \Rightarrow 1000 \mathrm{x}=123.123$
(2) $-(1)=1000 \mathrm{x}-\mathrm{x} 123 \cdot \overline{123}-0 . \overline{123}$.
$\Rightarrow 999 \mathrm{x}=123$
$\Rightarrow \mathrm{x}=\frac{123}{999}$
$\Rightarrow \mathrm{x}=\frac{41}{333}$ Rational number

Question 10.

If $\operatorname{Sn}=(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\ldots n$ terms then prove that $(x-y)$
$S_{n}=\left[\frac{x^{2}\left(x^{n}-1\right)}{x-1}-\frac{y^{2}\left(y^{n}-1\right)}{y-1}\right]$
Solution:
$\operatorname{Sn}=(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\ldots n$ terms
$\Rightarrow x . S_{n}=(x+y) x+\left(x^{2}+x y+y^{2}\right) x+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right) x+\ldots$.
$\Rightarrow x . S_{n}=x^{2}+x y+x^{3}+x^{2} y+y^{2} x+x^{4}+x^{3} y$
$+x^{2} y^{2}+y^{3} x+$.
Multiplying ' y ' on both sides,

$$
\begin{align*}
& =y \cdot S_{n}=(x+y) y+\left(x^{2}+x y+y^{2}\right) y+ \tag{1}\\
& \left(x^{3}+x^{2} y+x y^{2}+y^{3}\right) y+\ldots . \\
& =y \cdot S_{n}=x y+y^{2}+x^{2} y+x y^{2}+y^{3}+x^{3} y \\
& +x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}+\ldots \ldots \ldots
\end{align*}
$$

$$
(1)-(2) \Rightarrow
$$

$$
\begin{array}{r}
x \mathrm{~S}_{n}-y \mathrm{~S}_{n}=\left(x^{2}+x y+x^{3}+x^{2} y+y^{2} y+x^{4}+x^{3} y\right. \\
\left.+x^{2} y^{2}+y^{3} x+\ldots \ldots\right)-\left(x y+y^{2}+x^{2} y+x y^{2}+y^{3}+\right. \\
x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}+\ldots .
\end{array}
$$

$$
\Rightarrow(x-y) \mathrm{S}_{n}=\left(x^{2}+x^{3}+x^{4}+\ldots \ldots\right)-
$$

$$
\left(y^{2}+y^{3}+y^{4}+\ldots\right)
$$

$$
=\frac{x^{2}\left(x^{n}-1\right)}{x-1}-\frac{y^{2}\left(y^{n}-1\right)}{y-1}
$$

$$
\Rightarrow(x-y) \mathrm{S}_{n}=\left[\frac{x^{2}\left(x^{n}-1\right)}{x-1}-\frac{y^{2}\left(y^{n}-1\right)}{y-1}\right]
$$

Hence proved.

Ex 2.8

Question 1.
Find the sum of first n terms of the G.P.
(i) $5,-3, \frac{9}{5},-\frac{27}{25}$,
(ii) $256,64,16$,

Solution:
(i) $5,-3, \frac{9}{5}, \frac{-27}{25}, \ldots \ldots \ldots$

$$
\text { Here } a=5, r=\frac{t_{2}}{t_{1}}=\frac{-3}{5}<1
$$

$$
\mathrm{S}_{n}=a\left(\frac{1-r^{n}}{1-r}\right)
$$

$$
=5\left[\frac{1-\left(\frac{-3}{5}\right)^{n}}{1-\left(\frac{-3}{5}\right)}\right]=5\left[\frac{1-\left(\frac{-3}{5}\right)^{n}}{1-\frac{-3}{5}}\right]
$$

$$
=5 \frac{\left[1-\left(\frac{-3}{5}\right)^{n}\right]}{\frac{8}{5}}=5 \times \frac{5}{8}\left(1-\left(\frac{-3}{5}\right)^{n}\right)^{\top}
$$

$$
\therefore \mathrm{S}_{n}=\frac{25}{8}\left(1-\left(\frac{-3}{5}\right)^{n}\right)
$$

(ii) $256,64,16, \ldots \ldots$.

$$
a=256
$$

$$
r=\frac{64}{256}=\frac{4}{16}=\frac{1}{4}<1
$$

$$
\mathrm{S}_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

$$
=256\left(\frac{1-\left(\frac{1}{4}\right)^{n}}{1-\frac{1}{4}}\right)
$$

$$
256 \frac{\left(1-\left(\frac{1}{4}\right)^{n}\right)}{3}
$$

$$
=\quad \frac{3}{4}
$$

$$
=\frac{1024}{3}\left(1-\left(\frac{1}{4}\right)^{n}\right)
$$

Question 2.
Find the sum of first six terms of the G.P. $5,15,45, \ldots$
Solution:
G.P. $=5,15,45,15$

$$
\begin{aligned}
n=6, a=5, r & =\frac{15}{5}=3>1 \\
\therefore \quad \mathrm{~S}_{n} & =a \frac{\left(r^{n}-1\right)}{r-1} \\
\mathrm{~S}_{6} & =5\left(\frac{3^{6}-1}{3-1}\right) \\
=5 \frac{\left(3^{6}-1\right)}{2} & =\frac{5}{2}(729-1) \\
& =\frac{5}{2} \times 728=5 \times 364 \\
& =1820
\end{aligned}
$$

Question 3.

Find the first term of the GP. whose common ratio 5 and whose sum to first 6 terms is 46872 .
Solution:
Common ratio, $r=5$
$\mathrm{S}_{6}=46872$
$\therefore \quad \frac{a\left(r^{6}-1\right)}{r-1}=46872$
$\begin{array}{ll}\Rightarrow & \mathrm{S}_{6}=\frac{a\left(5^{6}-1\right)}{5-1}=46872 \\ \Rightarrow & a=\frac{46872 \times 4}{[25 \times 25 \times 25-1]}\end{array}$
$\Rightarrow \quad a=\frac{187488}{15624}=12$
\Rightarrow first term $=12$

Question 4.

Find the sum to infinity of (i) $9+3+1+\ldots$.
(ii) $21+14+\frac{28}{3}+\ldots$

Solution:
(i) $9+3+1+\ldots$
$a=9, r=\frac{3}{9}=\frac{1}{3}<1$

$$
\mathrm{S}_{\infty}=\frac{a}{1-r}=\frac{9}{1-\frac{1}{3}}
$$

$=\frac{\frac{9}{3-1}}{3}=\frac{\frac{9}{2}}{3}=9 \times \frac{3}{2}=\frac{27}{2}$
(ii) $21+14+\frac{28}{3}+\ldots$

Here $a=21, r=\frac{14}{21}=\frac{2}{3}$

$$
\mathrm{S}_{\infty}=\frac{a}{1-r}=\frac{21}{1-\frac{2}{3}}=\frac{21}{\frac{3-2}{3}}
$$

$$
\begin{aligned}
&=\frac{21}{\frac{1}{3}}=21 \times 3=63 \\
& 3 \text { MODELPAPERS, NCERT BOOKS, EXEMPLAR C OTHER PDF } \\
& \mathrm{S}_{\infty}=63
\end{aligned}
$$

Question 5.

If the first term of an infinite G.P. is 8 and its sum to infinity is $\frac{32}{3}$ then find the common ratio. Solution:
$a=8$
$\mathrm{S}_{\infty}=\frac{32}{3} \Rightarrow \frac{a}{1-r}=\frac{32}{3}$

$$
\frac{8}{1-r}=\frac{32}{3}
$$

$$
32(1-r)=24
$$

$$
1-r=\frac{24}{32}=\frac{6}{8}=\frac{3}{4}
$$

$$
-r=\frac{3}{4}-1=\frac{3-4}{4}
$$

$$
-r=\frac{-1}{4} \Rightarrow r=\frac{1}{4}
$$

Question 6.
Find the sum to n terms of the series
(i) $0.4+0.44+0.444+\ldots$ to n terms
(ii) $3+33+333+\ldots$ to n terms

Solution:
(i) $0.4+0.44+0.444+\ldots$ to n terms
$=4(0.1+0.11+0.111+\ldots$ to n terms $)$
$=\frac{4}{9}(0.9+0.99+0.999+\ldots$ to n terms $)$

$$
\begin{aligned}
& \left.=\frac{4}{9}(1-0.1)+(1-0.01)+(1-0.001)+\ldots \mathrm{n} \text { terms }\right) \\
& =\frac{4}{9}(1+1+1+\ldots n \text { terms })-\left(0.1+0.1^{2}+0.1^{3}+\right. \\
& \ldots n \text { terms }) \\
& =\frac{4}{9}\left[n-0.1\left[\frac{\left.1-(0.1)^{n}\right]}{1-0.1}\right] \begin{array}{l}
\mathrm{G} . \mathrm{P}
\end{array}\right. \\
& \begin{array}{l}
a=0.1 \\
r=0.1
\end{array} \\
& =\frac{4}{9}\left[n-\frac{1}{10}\left[\frac{\left.1-\left(\frac{1}{10}\right)^{n}\right]}{\left.\frac{9}{10}\right] \quad \mathrm{S}_{n}=a \frac{\left(1-r^{n}\right)}{1-r}}\right.\right. \\
& =\frac{4}{9}\left[n-\frac{1}{9}\left[1-\left(\frac{1}{10}\right)^{n}\right] \quad\right. \\
& =\frac{4}{9} n-\frac{4}{81}\left(1-\left(\frac{1}{10}\right)^{n}\right]
\end{aligned}
$$

(ii) $3+33+333+\ldots$ to n terms
$=3(1+11+111+\ldots .$. . to n terms $)$
$=\frac{3}{9}(9+99+999+\ldots$ to n terms $)$
$\frac{1}{3}=[(10-1)+(100-1)+(1000-1)+\ldots$ to n terms $]$
$=\frac{1}{3}[(10+100+1000+.)+.(-1) \mathrm{n}]$
$=\frac{1}{3}\left(\frac{10\left(10^{n}-1\right)}{9}-n\right)\left[\begin{array}{rl}\text { Hint: } \\ \text { Here } r & =10>1 \\ a & =10\end{array} \quad \begin{array}{rl}\mathrm{S}_{n} & =a \frac{\left(r^{n}-1\right)}{r-1} \\ & =\frac{10\left(10^{n}-1\right)}{9}\end{array}\right.$

Question 7.

Find the sum of the Geometric series

$$
3+6+12+\ldots \ldots+1536
$$

Solution:
$3+6+12+\ldots \ldots+1536$
Here $\mathrm{a}=3$

$$
\begin{array}{rlrl}
\begin{aligned}
& \text { Hint: } \\
& t_{n}=1536 \\
& a r^{n-1}=1536 \\
& \not x^{n}(2)^{n-1}=1536^{512} \\
& 2^{n-1}=512 \\
& 2^{n-1}=2^{9} \\
& n-1=9 \\
& n=10
\end{aligned} \\
& \mathrm{~S}_{n} & =\frac{a\left(r^{n}-1\right)}{(r-1)} \\
& =3(1024-1) \\
& =3 \times 1023=3069
\end{array}
$$

Question 8.

Kumar writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with the instruction that they continue the process similarly. Assuming that the process is unaltered and it costs $\square 2$ to mail one letter, find the amount spent on postage when 8th set of letters is mailed.

Solution:
Kumar (1) 2×4
Cost of posting $1^{\text {st }}$ set of Letters.
Cost of posting $2^{\text {nd }}$ set of letters

$$
\begin{align*}
& 2^{(1)} \times 4+2 \times 4+2 \times 4+2 \times 4 \tag{4}\\
= & 2(4 \times 4)=2 \times 4^{2}
\end{align*}
$$

Cost of posting $3^{\text {rd }}$ set of letters

$$
\begin{aligned}
& \text { (5) } \\
&=2 \times 4+2 \times 4+2 \times 4+2 \times 4+2 \times 4+\ldots .+2 \times 4 \\
&= 2 \times\left(4 \times 4^{2}\right)=2 \times 4^{3} \\
& \therefore 2 \times 4+2 \times 4^{2}+2 \times 4^{3}+\ldots 2 \times 4^{8}= \\
& \text { 1st } \quad \text { 2nd } \quad 3 \text { rd } \quad \ldots .8 \text { th }
\end{aligned}
$$

Amount spent
$\left[a+a r+a r^{2}+\ldots a r^{n-1}\right]$
$=4\left[2+2 \times 4+2 \times 42 \div+2 \times 4^{7}\right]$
$=4\left[S_{n}\right]$ Here $n=8, r=4$
It is a G.P
Sum of the G.P $=\frac{a\left(r^{n}-1\right)}{r-1}$ if $r>1$

$$
\begin{aligned}
S_{n}=S_{8} & =2\left(\frac{4^{8}-1}{4-1}\right) \\
& =2\left(\frac{65536-1}{3}\right) \\
& =2\left(\frac{65535}{3}\right)=\frac{131070}{3} \\
& =43690
\end{aligned}
$$

\therefore Cost of postage after posting 8th set of letters
$=4 \times 43690=\square 174760$

Question 9.

Find the rational form of the number $0 . \overline{123}$
Solution:
Let $\mathrm{x}=0.123123123 \ldots \ldots \ldots \Rightarrow \mathrm{x}=0 . \overline{123}$
Multiplying 1000 on both rides
$1000 \mathrm{x}=123.123123 \ldots \Rightarrow 1000 \mathrm{x}=123.123$
(2) $-(1)=1000 \mathrm{x}-\mathrm{x} 123 \cdot \overline{123}-0 . \overline{123}$.
$\Rightarrow 999 \mathrm{x}=123$
$\Rightarrow \mathrm{x}=\frac{123}{999}$
$\Rightarrow \mathrm{x}=\frac{41}{333}$ Rational number

Question 10.

If $\operatorname{Sn}=(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\ldots n$ terms then prove that $(x-y)$
$S_{n}=\left[\frac{x^{2}\left(x^{n}-1\right)}{x-1}-\frac{y^{2}\left(y^{n}-1\right)}{y-1}\right]$
Solution:
$\operatorname{Sn}=(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\ldots n$ terms
$\Rightarrow x . S_{n}=(x+y) x+\left(x^{2}+x y+y^{2}\right) x+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right) x+\ldots$.
$\Rightarrow x . S_{n}=x^{2}+x y+x^{3}+x^{2} y+y^{2} x+x^{4}+x^{3} y$
$+x^{2} y^{2}+y^{3} x+$.
Multiplying ' y ' on both sides,

$$
\begin{align*}
& =y \cdot S_{n}=(x+y) y+\left(x^{2}+x y+y^{2}\right) y+ \tag{1}\\
& \left(x^{3}+x^{2} y+x y^{2}+y^{3}\right) y+\ldots . \\
& =y \cdot S_{n}=x y+y^{2}+x^{2} y+x y^{2}+y^{3}+x^{3} y \\
& +x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}+\ldots \ldots \ldots
\end{align*}
$$

$$
(1)-(2) \Rightarrow
$$

$$
\begin{array}{r}
x \mathrm{~S}_{n}-y \mathrm{~S}_{n}=\left(x^{2}+x y+x^{3}+x^{2} y+y^{2} y+x^{4}+x^{3} y\right. \\
\left.+x^{2} y^{2}+y^{3} x+\ldots \ldots\right)-\left(x y+y^{2}+x^{2} y+x y^{2}+y^{3}+\right. \\
x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}+\ldots .
\end{array}
$$

$$
\Rightarrow(x-y) \mathrm{S}_{n}=\left(x^{2}+x^{3}+x^{4}+\ldots \ldots\right)-
$$

$$
\left(y^{2}+y^{3}+y^{4}+\ldots\right)
$$

$$
=\frac{x^{2}\left(x^{n}-1\right)}{x-1}-\frac{y^{2}\left(y^{n}-1\right)}{y-1}
$$

$$
\Rightarrow(x-y) \mathrm{S}_{n}=\left[\frac{x^{2}\left(x^{n}-1\right)}{x-1}-\frac{y^{2}\left(y^{n}-1\right)}{y-1}\right]
$$

Hence proved.

Ex 2.10

Multiple choice questions
Question 1.
Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r such that $\mathrm{a}=\mathrm{bq}+\mathrm{r}$, where r must satisfy.
(1) $1<$ r $<$ b
(2) $0<$ r $<$ b
(3) $0 \leq r<b$
(4) $0<r \leq b$

Answer:
(3) $0 \leq r<b$

Question 2.
Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are
(1) $0,1,8$
(2) $1,4,8$
(3) $0,1,3$
(4) $1,3,5$

Answer:
(1) $0,1,8$

Hint:
Cube of any +ve integers $1^{3}, 2^{3}, 3^{3}, 4^{3}, \ldots$
$1,8, \underline{27}, \underline{64}, \underline{125}, 216 \ldots$
Remainders when $27,64,125$ are divided by 9 .
Question 3.
If the H.C.F of 65 and 117 is expressible in the form of $65 m-117$, then the value of m is
(1) 4
(2) 2
(3) 1
(4) 3

Answer:
(2) 2

Hint:
$117=3 \times 3 \times 13$
$65=5 \times 13$
H.C.F $=13$
$65 \mathrm{~m}-117=13 \Rightarrow 65 \mathrm{~m}=117+13=130$
$\mathrm{m}=\frac{130}{65}=2$
The value of $m=2$

Question 4.
The sum of the exponents of the prime factors in the prime factorization of 1729 is
(1) 1
(2) 2
(3) 3
(4) 4

Answer:
(3) 3

Hint:
$1729=7^{1} \times 13^{1} \times 19^{1}$

Question 5.
The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
(1) 2025
(2) 5220
(3) 5025
(4) 2520

Answer:
(4) 2520

Hint:

2	$1,2,3,4,5,6,7,8,9,10$
2	$1,1,3,2,5,3,7,4,9,5$
3	$1,1,3,1,5,1,7,2,9,5$
5	$1,1,1,1,5,1,7,2,3,5$
7	$1,1,1,1,1,1,7,2,3,1$
2	$1,1,1,1,1,1,1,2,3,1$
3	$1,1,1,1,1,1,1,1,3,1$
	$1,1,1,1,1,1,1,1,1,1$

\therefore L.C.M. of $1,2,3,4, \ldots, 10$ is $2 \times 2 \times 3 \times 5 \times 7 \times 2 \times 3=2520$
Question 6.
$7^{4 \mathrm{k}} \equiv \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .(\bmod 100)$
(1) 1
(2) 2
(3) 3
(4) 4

Answer:
(1) 1

Hint:
$7^{4 \mathrm{k}} \equiv \ldots .(\bmod 100)$
$7^{4 \mathrm{k}}=\left(7^{4}\right)^{\mathrm{k}} \equiv \ldots \ldots \ldots(\bmod 100)\left(7^{4}-2401\right)$
The value is 1 .
Question 7.
Given $\mathrm{F}_{1}=1, \mathrm{~F}_{2}=3$ and $\mathrm{Fn}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}$ then
(1) 3
(2) 5
(3) 8
(4) 11

Answer:
(4) 11

Answer:
$\mathrm{F}_{1}=1, \mathrm{~F}_{2}=3$
$\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}$
$\mathrm{F}_{5}=\mathrm{F}_{5-1}+\mathrm{F}_{5-2}=\mathrm{F}_{4}+\mathrm{F}_{3}$
$=F_{3}+F_{2}+F_{2}+F_{1}$
$=F_{2}+F_{1}+F_{2}+F_{2}+F_{1}$
$=3+1+3+3+1=11$

Question 8.
The first term of an arithmetic progression is unity and the common difference is 4 . Which of the following will be a term of this A.P
(1) 4551
(2) 10091
(3) 7881
(4) 13531

Answer:
(3) 7881

Hint:
Here $\mathrm{a}=1, \mathrm{~d}=4$
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=1+(\mathrm{n}-1) 4$
$=1+4 \mathrm{n}-4$
$=4 \mathrm{n}-3$
4554
(i) $4 \mathrm{n}-3=4551 \Rightarrow 4 \mathrm{n}=4551+3 \Rightarrow \mathrm{n}=\frac{4554}{4}=1138.5$.

It is not a term of A.P.
(ii) $4 \mathrm{n}-3=10091 \Rightarrow 4 \mathrm{n}=10091+3=10094$
$\mathrm{n}=\frac{10094}{4}=2523.5$ it is a term of A.P.
(iii) $4 \mathrm{n}-3=7881 \Rightarrow 4 \mathrm{n}=7881+3$
$\mathrm{n}=\frac{7884}{4}=1971$.
$\therefore 7881$ is a term of the A.P.
Question 9.
If 6 times of $6^{\text {th }}$ term of an A.P is equal to 7 times the 7 th term, then the 13 th term of the A.P. is
(1) 0
(2) 6
(3) 7
(4) 13

Answer:
(1) 0

Hint:
$6 \mathrm{t}_{6}=7 \mathrm{t}_{7}$
$6(\mathrm{a}+5 \mathrm{~d})=7(\mathrm{a}+6 \mathrm{~d})$

$$
\begin{aligned}
& 6 a+30 d=7 a+42 d \\
& 7 a+42 d-6 a-30 d=0 \\
& a+12 d=0=t_{13}
\end{aligned}
$$

Question 10.
An A.P consists of 31 terms. If its $16^{\text {th }}$ term is m, then the sum of all the terms of this A.P. is
(1) 16 m
(2) 62 m
(3) 31 m
(4) $\frac{31}{2} \mathrm{~m}$

Answer:
(3) 31 m

Hint:
$M=31$
$\mathrm{t}_{16}=\mathrm{m} \Rightarrow \mathrm{a}+15 \mathrm{~d}=\mathrm{m}$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{\mathrm{n}}=\frac{31}{2}[2 \mathrm{a}+30 \mathrm{~d}]=\frac{31}{2} \times 2[\mathrm{a}+15 \mathrm{~d}]$
$=31(\mathrm{~m})=31 \mathrm{~m}$
Question 11.
In an A.P., the first term is 1 and the common difference is 4 . How many terms of the A.P must be taken for their sum to be equal to 120 ?
(1) 6
(2) 7
(3) 8
(4) 9

Answer:
(3) 8

Hint:

$$
\begin{aligned}
& a=1, d=4 \\
& \begin{aligned}
& \mathrm{S}_{n}=120=\frac{n}{2}(2 a+(n-1) d) \\
& 120=\frac{n}{2}(2 \times 1+(n-1) 4) \\
& 120=\frac{n}{2}(2+4 n-4)=\frac{n}{2}(4 n-2) \\
&=\frac{n}{2} \cdot 2(2 n-1) \\
&=n(2 n-1) \\
& 120=2 n^{2}-n \\
& 2 n^{2}-n-120=0 \\
&(n-8)(2 n+15)=0 \\
& \therefore \quad n=8, n=\frac{-15}{2}
\end{aligned}
\end{aligned}
$$

Question 12.
If $\mathrm{A}=2^{65}$ and $\mathrm{B}=2^{64}+2^{63}+2^{62}++2^{0}$ which of the following is true?
(1) B is 264 more than A
(2) A and B are equal
(3) B is larger than A by 1
(4) A is larger than B by 1

Answer:
(4) A is larger than B by 1

Hint:
$\mathrm{A}=2^{65}$
B $=2^{64}+2^{63}+2^{62}+\ldots+20$
$B=2^{0}+2^{1}+2^{2}+\ldots+264$
G.P $=1+2^{1}+2^{2}+\ldots+2^{64}$ it is a G.P

Here $\mathrm{a}=1, \mathrm{r}=2, \mathrm{n}=65$
\therefore Sum of the G.P $=\mathrm{S}_{65}=\frac{a\left(r^{n}-1\right)}{r-1}$

$$
=\frac{1\left(2^{65}-1\right)}{2-1}=2^{65}-1
$$

$\mathrm{A}=2^{65}, \mathrm{~B}=2^{65}-1$
$\therefore \mathrm{B}$ is smaller.
A is larger than B by 1 .

Question 13.
The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \ldots$.
(1) $\frac{1}{24}$
(2) $\frac{1}{27}$
(3) $\frac{2}{3}$
(4) $\frac{1}{81}$

Answer:
(2) $\frac{1}{27}$

Hint:

$$
\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \ldots
$$

$$
r=\frac{\frac{1}{8}}{\frac{3}{16}}=\frac{1}{8} \times \frac{{ }^{2}}{3}=\frac{2}{3}
$$

$$
r=\frac{\frac{1}{12}}{\frac{1}{8}}=\frac{1}{12_{3}} \times \frac{8^{2}}{1}=\frac{2}{3}
$$

\therefore The next term is $\frac{1}{18} \times \frac{2}{3}=\frac{2}{54}=\frac{1}{27}$
Question 14.
If the sequence $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots \ldots \ldots$. are in A.P. then the sequence $\mathrm{t}_{6}, \mathrm{t}_{12}, \mathrm{t}_{18}, \ldots \ldots$ is $\ldots \ldots \ldots \ldots$.
(1) a Geometric progression
(2) an Arithmetic progression
(3) neither an Arithmetic progression nor a Geometric progression
(4) a constant sequence

Answer:
(2) an Arithmetic progression

Hint: $t_{1}, t_{2}, t_{3} \ldots$ are in A.P
$\mathrm{t}_{6}, \mathrm{t}_{12}, \mathrm{t}_{18} \ldots \ldots$ is also an A.P. $(6,12,18 \ldots \ldots .$. is an A.P.)
Question 15.
The value of $\left(1^{3}+2^{3}+3^{3}+\ldots+15^{3}\right)-(1+2+3+\ldots+15)$ is
(1) 14400
(2) 14200
(3) 14280
(4) 14520

Answer:
(3) 14280

Hint:
$\left(\frac{15 \times 16}{2}\right)^{2}-\frac{15 \times 16}{2}=(120)^{2}-120=14280$

Unit Exercise 2

Question 1.
Prove that $\mathrm{n}^{2}-\mathrm{n}$ divisible by 2 for every positive integer n .
Answer:
To prove $\mathrm{n}^{2}-\mathrm{n}$ divisible by 2 for every positive integer n .
We know that any positive integer is of the form $2 q$ or $2 q+1$, for some integer q.
So, following cases arise:
Case I. When $\mathrm{n}=2 \mathrm{q}$.
In this case, we have
$\mathrm{n}^{2}-\mathrm{n}=(2 \mathrm{q})^{2}-2 \mathrm{q}=4 \mathrm{q}^{2}-2 \mathrm{q}=2 \mathrm{q}(2 \mathrm{q}-1)$
$\Rightarrow \mathrm{n}^{2}-\mathrm{n}=2 \mathrm{r}$ where $\mathrm{r}=\mathrm{q}(2 \mathrm{q}-1)$
$\Rightarrow \mathrm{n}^{2}-\mathrm{n}$ is divisible by 2 .
Case II. When $\mathrm{n}=2 \mathrm{q}+1$.
In this case, we have
$\mathrm{n}^{2}-\mathrm{n}=(2 \mathrm{q}+1)^{2}-(2 \mathrm{q}+1)$
$=(2 q+1)(2 q+1-1)=(2 q+1) 2 q$
$\Rightarrow \mathrm{n}^{2}-\mathrm{n}=2 \mathrm{r}$ where $\mathrm{r}=\mathrm{q}(2 \mathrm{q}+1)$
$\Rightarrow \mathrm{n}^{2}-\mathrm{n}$ is divisible by 2 .
Hence $\mathrm{n}^{2}-\mathrm{n}$ is divisible by 2 for every positive integer n .
Question 2.
A milk man has 175 litres of cow's milk and 105 litres of buffalow's milk. He wishes to sell the milk by filling the two types of milk in cans of equal capacity. Calculate the following (i) Capacity of a can
(ii) Number of cans of cow's milk
(iii) Number of cans of buffalow's milk.

Answer:
Cow's milk $=175$ litres

Buffalow's milk $=105$ litres
Find the H.C.F. of 175 and 105 using Euclid's division method of factorisation method.

5	175
	35
	7

$175=5 \times 5 \times 7$
$105=3 \times 5 \times 7$
H.C.F. of 175 and $105=5 \times 7=35$
(i) The capacity of the milk can's is 35 litres
(ii) Cows milk $=175$ litres

Number of cans $=\frac{175}{35}=5$

(iii) Buffalow's milk $=105$ litres

Number of cans $=\frac{105}{35}=3$
(i) Capacity of one can $=35$ litres
(ii) Number of can's for cow's milk= 5 litres
(iii) Number of can's for Buffalow's milk $=3$ litres

Question 3.

When the positive integers a, b and c are divided by 13 the respective remainders are 9,7 and 10 .
Find the remainder when $\mathrm{a}+2 \mathrm{~b}+3 \mathrm{c}$ is divided by 13 .
Answer:
Let the positive integers be a, b, and c .
$a=13 q+9$
$b=13 q+7$
$c=13 q+10$
$a+2 b+3 c=13 q+9+2(13 q+7)+3(13 q+10)$
$=13 q+9+269+14+39 q+30$
$=78 q+53=(13 \times 6) q+53$
The remainder is 53 .
But $53=13 \times 4+1$
\therefore The remainder is 1

Question 4.
Show that 107 is of the form $4 q+3$ for any integer q.
Answer:
4) $107 \quad(26$
$\frac{8}{27}$
$\frac{24}{3}$
$107=4 \times 26+3$
This is in the form of $a=b q+r$
Hence it is proved.
Question 5.
If $(m+1)^{\text {th }}$ term of an A.P. is twice the $(n+1)^{\text {th }}$ term, then prove that $(3 m+1)^{\text {th }}$ term is twice the $(\mathrm{m}+\mathrm{n}+1)^{\text {th }}$ term.
Solution:
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{t}_{\mathrm{m}+1}=\mathrm{a}+(\mathrm{m}+1-1) \mathrm{d}$
$=\mathrm{a}+\mathrm{md}$
$\mathrm{t}_{\mathrm{n}+1}=\mathrm{a}+(\mathrm{n}+1-1) \mathrm{d}$
$=\mathrm{a}+\mathrm{nd}$
$2\left(\mathrm{t}_{\mathrm{n}+1}\right)=2(\mathrm{a}+\mathrm{nd})$
$\mathrm{t}_{\mathrm{m}+1}=2 \mathrm{t}_{\mathrm{n}+1} \ldots \ldots \ldots \ldots \ldots$.
$\Rightarrow \mathrm{a}+\mathrm{md}=2(\mathrm{a}+\mathrm{nd})$
$2 a+2 n d-a-m d=0$
$a+(2 n-m) d=0$
$\mathrm{t}_{(3 \mathrm{~m}+1)}=\mathrm{a}+(3 \mathrm{~m}+1-1) \mathrm{d}$
$=a+3 \mathrm{md}$
$\mathrm{t}_{(\mathrm{m}+\mathrm{n}+1)}=\mathrm{a}+(\mathrm{m}+\mathrm{n}+1-1) \mathrm{d}$
$=\mathrm{a}+(\mathrm{m}+\mathrm{n}) \mathrm{d}$
$2\left(\mathrm{t}_{(\mathrm{m}+\mathrm{n}+1)}\right)=2(\mathrm{a}+(\mathrm{m}+\mathrm{n}) \mathrm{d})$
$=2 \mathrm{a}+2 \mathrm{md}+2 \mathrm{nd}$
$t_{(3 m+1)}=2 t_{(m+n+1)}$
$a+3 m d=2 a+2 m d+2 n d$
$2 a+2 m d+2 n d-a-3 m d=0$
$\mathrm{a}-\mathrm{md}+2 \mathrm{nd}=0$
$a+(2 n-m) d=0$
\therefore It is proved that $\mathrm{t}_{(3 \mathrm{~m}+1)}=2 \mathrm{t}_{(\mathrm{m}+\mathrm{n}+1)}$
Question 6.
Find the $12^{\text {th }}$ term from the last term of the A.P $-2,-4,-6, \ldots-100$.
Solution:

$$
\begin{aligned}
n=\frac{l-a}{d}+1 & =\frac{-100-(-2)}{-2}+1 \\
=\frac{-100+2}{-2}+1 & =\frac{-98}{-2}+1 \\
n & =49+1=50
\end{aligned}
$$

$12^{\text {th }}$ term from the last $=39^{\text {th }}$ term from the beginning
$\therefore \mathrm{t}_{39}=\mathrm{a}+38 \mathrm{~d}$
$=-2+38(-2)$
$=-2-76$
$=-78$
Question 7.
Two A.P.'s have the same common difference. The first term of one A.P. is 2 and that of the other is
7. Show that the difference between their $10^{\text {th }}$ terms is the same as the difference between their

21 st terms, which is the same as the difference between any two corresponding terms.
Answer:
Let the common difference for the 2 A.P be "d"
For the first A.P
$\mathrm{a}=2, \mathrm{~d}=\mathrm{d}, \mathrm{n}=10$
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{t}_{10}=2+9 \mathrm{~d} \ldots$.(1)
For the $2^{\text {nd }} A . P$
$\mathrm{a}=7, \mathrm{~d}=\mathrm{d} \mathrm{n}=10$
$\mathrm{t}_{10}=7+(9) \mathrm{d}$
$=7+9 \mathrm{~d} \ldots$. (2)
Difference between their 10 th term $\Rightarrow(1)-(2)$
$=2+9 \mathrm{~d}-(7+9 \mathrm{~d})$
$=2+9 \mathrm{~d}-7-9 \mathrm{~d}$
$=-5$
For first A.P when $\mathrm{n}=21, \mathrm{a}=2, \mathrm{~d}=\mathrm{d}$
$t_{21}=2+20 d$ \qquad
For second A.P when $n=21, a=7, d=d$
$t_{21}=7+20 d$.
Difference between the $21^{\text {st }}$ term $\Rightarrow(3)-(4)$
$=2+20 \mathrm{~d}-(7+20 \mathrm{~d})$
$=2+20 \mathrm{~d}-7-20 \mathrm{~d}$
$=-5$
Difference between their 10 th term and $21^{\text {st }}$ term $=-5$
Hence it is proved.

Question 8.
A man saved $\square 16500$ in ten years. In each year after the first he saved $\square 100$ more than he did in the preceding year. How much did he save in the first year?
Solution:
$\mathrm{S}_{10}=\square 16500$
$a, a+d, a+2 d \ldots$
$\mathrm{d}=100$
$\mathrm{n}=10$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$
$\mathrm{S}_{10}=16500$
$\mathrm{S}_{10}=\frac{10}{2}(2 \times \mathrm{a}+9 \times 100)$
$16500=5(2 \mathrm{a}+900)$
$16500=10 \mathrm{a}+4500$
$10 \mathrm{a}=16500-4500$
$10 a=12000$
$\mathrm{a}=\frac{12000}{10}=\square 1200$
\therefore He saved $\square 1200$ in the first year
Question 9.
Find the G.P. in which the 2 nd term is $\sqrt{6}$ and the 6 th term is $9 \sqrt{6}$.
Solution:

$$
\begin{align*}
t_{2} & =\sqrt{6} \\
t_{6} & =9 \sqrt{6} \\
t_{n} & =a r^{n-1} \text { in G.P } \\
\therefore t_{2} & =a r^{2-1}=\sqrt{6} \\
a r & =\sqrt{6} \\
t_{6} & =a r^{6-1}=9 \sqrt{6} \\
a r^{5} & =9 \sqrt{6} \\
\frac{(2)}{(1)} & =\frac{a r^{s^{4}}}{a r}=\frac{9 \sqrt{6}}{\sqrt{6}} \\
r^{4}=9 \Rightarrow r^{2} & =3 \Rightarrow r=\sqrt{3}
\end{align*}
$$

Substitute $r=\sqrt{3}$ in (1)

$$
\begin{aligned}
a r & =\sqrt{6} \\
a \sqrt{3} & =\sqrt{6} \text { PAPERS, NCE } \\
a & =\frac{\sqrt{6}}{\sqrt{3}}=\sqrt{\frac{6}{3}}=\sqrt{2}
\end{aligned}
$$

$\therefore \mathrm{G} . \mathrm{P}=a, a r, a r^{2}, \ldots$

$$
\begin{aligned}
& =\sqrt{2}, \sqrt{6}, \sqrt{2} \sqrt{3}^{2}, \cdots \\
& =\sqrt{2}, \sqrt{6}, 3 \sqrt{2}, \ldots
\end{aligned}
$$

Question 10.
The value of a motorcycle depreciates at the rate of 15% per year. What will be the value of the motor cycle 3 year hence, which is now purchased for $\square 45,000$?
Answer:
Value of the motor cycyle $=\square 45000$
$\mathrm{a}=45000$
Depreciation $=15 \%$ of the cost value
$=\frac{15}{100} \times 45000$
$=15 \times 450$
$=6750$
$\mathrm{d}=-6750$ (decrease it is depreciation
Value of the motor cycle lightning of the 2 nd year $=45000-6750$
$=\square 38250$
Depreciation for the 2 nd year $=\frac{15}{100} \times 38250$
$=\square 57370.50$

Additional Questions

Question 1.
Use Euclid's algorithm to find the HCF of 4052 and 12756.
Solution:
Since $12576>4052$ we apply the division lemma to 12576 and 4052 , to get HCF $12576=4052 \times 3+420$.
Since the remainder $420 \neq 0$, we apply the division lemma to 4052 $4052=420 \times 9+272$.
We consider the new divisor 420 and the new remainder 272 and apply the division lemma to get $420=272 \times 1+148,148 \neq 0$.
\therefore Again by division lemma
$272=148 \times 1+124$, here $124 \neq 0$.
\therefore Again by division lemma
$148=124 \times 1+24$, Here $24 \neq 0$.
\therefore Again by division lemma
$124=24 \times 5+4$, Here $4 \neq 0$.
\therefore Again by division lemma
$24=4 \times 6+0$.
The remainder has now become zero. So our procedure stops. Since the divisor at this stage is 4 .
\therefore The HCF of 12576 and 4052 is 4 .
Question 2.
If the HCF of 65 and 117 is in the form $(65 m-117)$ then find the value of m.
Answer:
By Euclid's algorithm $117>65$
$117=65 \times 1+52$
$52=13 \times 4 \times 0$
$65=52 \times 1+13$
H.C.F. of 65 and 117 is 13
$65 m-117=13$
$65 \mathrm{~m}=130$
$\mathrm{m}=\frac{130}{65}=2$
The value of $\mathrm{m}=2$
Question 3.
Find the LCM and HCF of 6 and 20 by the prime factorisation method.
Solution:
We have $6=2^{1} \times 3^{1}$ and
$20=2 \times 2 \times 5=2^{2} \times 5^{1}$
You can find $\operatorname{HCF}(6,20)=2$ and $\operatorname{LCM}(6,20)=2 \times 2 \times 3 \times 5=60$. As done in your earlier
classes. Note that $\operatorname{HCF}(6,20)=2^{1}=$ product of the smallest power of each common prime factor in the numbers.
$\operatorname{LCM}(6,20)=2^{2} \times 3^{1} \times 5^{1}=60$.
$=$ Product of the greatest power of each prime factor, involved in the numbers.

Question 4.
Prove that $\sqrt{3}$ is irrational.
Answer:
Let us assume the opposite, (1) $\sqrt{3}$ is irrational.
Hence $\sqrt{3}=\frac{p}{q}$
Where p and $\mathrm{q}(\mathrm{q} \neq 0)$ are co-prime (no common factor other than 1)

$$
\text { Hence, } \begin{aligned}
\sqrt{3} & =\frac{p}{q} \\
\sqrt{3} q & =p
\end{aligned}
$$

Squaring both side

$$
\begin{align*}
(\sqrt{3} q)^{2} & =p^{2} \\
3 q^{2} & =p^{2} \\
q^{2} & =\frac{p^{2}}{3} \tag{1}
\end{align*}
$$

Hence, 3 divides p^{2}
So 3 divides p also
Hence we can say
$\frac{p}{3}=\mathrm{c}$ where c is some integer
$\mathrm{p}=3 \mathrm{c}$
Now we know that
$3 q^{2}=p^{2}$

Putting $=3 \mathrm{c}$
$3 q^{2}=(3 c)^{2}$
$3 \mathrm{q}^{2}=9 \mathrm{c}^{2}$
$\mathrm{q}^{2}=\frac{1}{3} \times 9 \mathrm{c}^{2}$
$\mathrm{q}^{2}=3 \mathrm{c}^{2}$
$\frac{q^{2}}{3}=C^{2}$
Hence 3 divides q^{2}
So, 3 divides q also
By (1) and (2) 3 divides both p and q
By contradiction $\sqrt{3}$ is irrational.
Question 5.
Which of the following list of numbers form an AP? If they form an AP, write the next two terms:
(i) $4,10,16,22, \ldots$
(ii) $1,-1,-3,-5, \ldots$
(iii) $-2,2,-2,2,-2, \ldots$
(iv) $1,1,1,2,2,2,3,3,3, \ldots$

Solution:
(i) $4,10,16,22, \ldots \ldots$

We have $\mathrm{a}_{2}-\mathrm{a}_{1}=10-4=6$
$a_{3}-a_{2}=16-10=6$
$a_{4}-a_{3}=22-16=6$
\therefore It is an A.P. with common difference 6 .
\therefore The next two terms are, $\underline{28}, \underline{34}$
(ii) $1,-1,-3,-5$
$\mathrm{t}_{2}-\mathrm{t}_{1}=-1-1=-2$
$\mathrm{t}_{3}-\mathrm{t}_{2}=-3-(-1)=-2$
$\mathrm{t}_{4}-\mathrm{t}_{3}=-5-(-3)=-2$
The given list of numbers form an A.P with the common difference -2 .
The next two terms are $(-5+(-2))=-7,-7+(-2)=-9$.
(iii) $-2,2,-2,2,-2$
$\mathrm{t}_{2}-\mathrm{t}_{1}=2-(-2)=4$
$\mathrm{t}_{3}-\mathrm{t}_{2}=-2-2=-4$
$t_{4}-t_{3}=2-(-2)=4$
It is not an A.P.
(iv) $1,1,1,2,2,2,3,3,3$
$\mathrm{t}_{2}-\mathrm{t}_{1}=1-1=0$
$\mathrm{t}_{3}-\mathrm{t}_{2}=1-1=0$
$\mathrm{t}_{4}-\mathrm{t}_{3}=2-1=1$
Here $\mathrm{t}_{2}-\mathrm{t}_{1} \neq \mathrm{t}_{3}-\mathrm{t}_{2}$
\therefore It is not an A.P.
Question 6.
Find n so that the $\mathrm{n}^{\text {th }}$ terms of the following two A.P.'s are the same.
$1,7,13,19, \ldots$ and $100,95,90, \ldots$
Answer:
The given A.P. is $1,7,13,19, \ldots$.
$a=1, d=7-1=6$
$\mathrm{t}_{\mathrm{n} 1}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{t}_{\mathrm{n} 1}=1+(\mathrm{n}-1) 6$
$=1+6 n-6=6 n-5 \ldots$ (1)
The given A.P. is $100,95,90, \ldots$.
$a=100, d=95-100=-5$
$\mathrm{tn}_{2}=100+(\mathrm{n}-1)(-5)$
$=100-5 n+5$
$=105-5 n \ldots$....(2)
Given that, $\mathrm{t}_{\mathrm{n} 1}=\mathrm{t}_{\mathrm{n} 2}$
$6 n-5=105-5 n$
$6 n+5 n=105+5$
$11 \mathrm{n}=110$
$\mathrm{n}=10$
$\therefore 10^{\text {th }}$ term are same for both the A.P's.
Question 7.
In a flower bed, there are 23 rose plants in the first row, 21 in the second, 19 is the third, and so on.
There are 5 rose plants in the last row. How many rows are there in the flower bed?
Answer:
The number of rose plants in the $1 \mathrm{st}, 2 \mathrm{nd}, 3 \mathrm{rd}, \ldots$ rows are
$23,21,19, \ldots \ldots \ldots \ldots . .5$
It forms an A.P.
Let the number of rows in the flower bed be n.
Then $\mathrm{a}=23, \mathrm{~d}=21-23=-2, \mathrm{l}=5$.
As, $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1)$ di.e. $\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
We have $5=23+(n-1)(-2)$
i.e. $-18=(n-1)(-2)$
$\mathrm{n}=10$
\therefore There are 10 rows in the flower bed.

Question 8.
Find the sum of the first 30 terms of an A.P. whose $n^{\text {th }}$ term is $3+2 n$.
Answer:
Given,
$\mathrm{t}_{\mathrm{n}}=3+2 \mathrm{n}$
$\mathrm{t}_{1}=3+2(1)=3+2=5$
$t_{2}=3+2(2)=3+4=7$
$\mathrm{t}_{3}=3+2(3)=3+6=9$
Here $a=5, d=7-5=2, n=30$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{30}=\frac{30}{2}[10+29(2)]$
$=15[10+58]=15 \times 68=1020$
\therefore Sum of first 30 terms $=1020$
Question 9.
How many terms of the AP: 24, 21, 18, . must be taken so that their sum is 78 ?
Solution:
Here $a=24, d=21-24=-3, S_{n}=78$. We need to find n.
We know that,
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$
$78=\frac{n}{2}(48+13(-3))$
$78=\frac{n}{2}(51-3 n)$
or $3 n^{2}-51 n+156=0$
$\mathrm{n}^{2}-17 \mathrm{n}+52=0$
$(n-4)(n-13)=0$
$\mathrm{n}=4$ or 13
The number of terms are 4 or 13 .
Question 10.
The sum of first n terms of a certain series is given as $3 n^{2}-2 n$. Show that the series is an arithmetic series.
Solution:
Given, $S_{n}=3 n^{2}-2 n$
$S_{1}=3(1)^{2}-2(1)$
$=3-2=1$
ie; $\mathrm{t}_{1}=1\left(\therefore \mathrm{~S}_{1}=\mathrm{t}_{1}\right)$
$S_{2}=3(2)^{2}-2(2)=12-4=8$
ie; $\mathrm{t}_{1}+\mathrm{t}_{2}=8\left(\therefore \mathrm{~S}_{2}=\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
$\therefore \mathrm{t}_{2}=8-1=7$
$S_{3}=3(3)^{2}-2(3)=27-6=21$
$\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}=21\left(\therefore \mathrm{~S}_{3}=\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}\right)$
$8+\mathrm{t}_{3}=21\left(\right.$ Substitute $\left.\mathrm{t}_{1}+\mathrm{t}_{2}=8\right)$
$\mathrm{t}_{3}=21-8 \Rightarrow \mathrm{t}_{3}=13$
\therefore The series is $1,7,13, \ldots \ldots \ldots \ldots$ and this series is an A.P. with common difference 6 .

