Geometry

Ex 4.1

Question 1.

Check whether the which triangles are similar and find the value of x .

(ii)

Solution:
(i)

$$
\frac{\mathrm{AE}}{\mathrm{AC}}=\frac{\mathrm{AD}}{\mathrm{AB}} \text { (for similar triangle) }
$$

But here, $\quad \frac{2}{\frac{11}{2}} \neq \frac{3}{8}$

$$
2 \times \frac{2}{11} \neq \frac{3}{8} \underbrace{2}_{5}
$$

$$
\frac{4}{11} \neq \frac{3}{8}
$$

\therefore They are not similar triangles
(ii) In $\triangle \mathrm{ABC}, \triangle \mathrm{PQC}$,

$$
\begin{aligned}
\angle \mathrm{ABC} & =\angle \mathrm{PQC}=70^{\circ} \\
\angle \mathrm{C} & =\angle \mathrm{C} \text { (common angles) } \\
\therefore \angle \mathrm{A} & =\angle \mathrm{QPC}(\therefore \text { AAA criterion })
\end{aligned}
$$

$\therefore \triangle \mathrm{ABC}$ and $\triangle \mathrm{PQC}$ are similar triangles

$$
\begin{aligned}
\frac{\mathrm{AB}}{\mathrm{PQ}} & =\frac{\mathrm{BC}}{\mathrm{QC}} \\
\frac{5}{x} & =\frac{6}{3} \\
6 x & =15
\end{aligned}
$$

$\mathrm{x}=\underset{6}{15}=2.5$

Question 2.

A girl looks the reflection of the top of the lamp post on the mirror which is 6.6 m away from the foot of the lamppost. The girl whose height is 1.25 m is standing 2.5 m away from the mirror.
Assuming the mirror is placed on the ground facing the sky and the girl, mirror and the lamppost are in a same line, find the height of the lamp post?
Solution:
In the picture $\triangle \mathrm{MLN}, \Delta \mathrm{MGRare}$ similar triangles.

$\therefore \quad \frac{\mathrm{GR}}{\mathrm{LN}}=\frac{\mathrm{MG}}{\mathrm{ML}}$

$$
\frac{1.25}{h}=\frac{2.5}{6.6}
$$

$$
1.25 \times 6.6=2.5 \times h
$$

$$
h=\frac{1.25 \times 6.6}{2.5}
$$

$$
h=\frac{125^{\phi}}{100_{A_{2}}} \times \frac{66^{33}}{16} \times \frac{10}{25_{5}}
$$

$$
=\frac{33}{10}=3.3 \mathrm{~m}
$$

\therefore Height of the lamp post is 3.3 m .

Question 3.

A vertical stick of length 6 m casts a shadow 400 cm long on the ground and at the same time a tower casts a shadow 28 m long. Using similarity, find the height of the tower.
Solution:
In the picture $\triangle \mathrm{ABC}, \triangle \mathrm{DEC}$ are similar triangles.

$$
\begin{aligned}
\therefore \frac{\mathrm{AB}}{\mathrm{DE}} & =\frac{\mathrm{BC}}{\mathrm{EC}} \\
\frac{h}{6} & =\frac{28}{4}
\end{aligned}
$$

$$
\begin{aligned}
A h & =28^{7} \times 6 \\
h & =42 \mathrm{~m}
\end{aligned}
$$

Height of a tower $=42 \mathrm{~m}$

Question 4.

Two triangles QPR and QSR , right angled at P and S respectively are drawn on the same base QR and on the same side of QR . If PR and SQ intersect at T , prove that $\mathrm{PT} \times \mathrm{TR}=\mathrm{ST} \times \mathrm{TQ}$.
Solution:
In $\triangle \mathrm{RPQ}$,
$\mathrm{RP}^{2}+\mathrm{PQ}^{2}=\mathrm{QR}^{2}$
$\therefore \mathrm{PQ}^{2}=\mathrm{QR}^{2}-\mathrm{RP}^{2}$
In $\triangle T P Q$,
$\mathrm{TP}^{2}+\mathrm{PQ}^{2}=\mathrm{QT}^{2}$
$\therefore \mathrm{PQ}^{2}=\mathrm{QT}^{2}-\mathrm{TP}^{2}$
Equating (1) and (2) we get,
$\mathrm{QR}^{2}-\mathrm{RP}^{2}=\mathrm{QT}^{2}-\mathrm{TP}^{2}$
$\mathrm{RP}=\mathrm{RT}+\mathrm{TP}$
$\therefore \mathrm{QR}^{2}-(\mathrm{RT}+\mathrm{TP})^{2}=\mathrm{QT}^{2}-\mathrm{TP}^{2}$
$\therefore \mathrm{QR}^{2}-\mathrm{RT}^{2}-\mathrm{TP}^{2}-2 \mathrm{RT} \cdot \mathrm{TP}=\mathrm{QT}^{2}-\mathrm{TP}^{2}$
$\mathrm{QR}^{2}=\mathrm{QT}^{2}+\mathrm{RT}^{2}+2 \mathrm{RT} . \mathrm{TP}$

In \triangle QSR,
$\mathrm{QS}^{2}+\mathrm{SR}^{2}=\mathrm{QR}^{2}$
$\mathrm{SR}^{2}=\mathrm{QR}^{2}-\mathrm{SR}^{2}$
In \triangle TSR,
$\mathrm{ST}^{2}+\mathrm{SR}^{2}=\mathrm{TR}^{2}$
$\therefore \mathrm{SR}^{2}=\mathrm{TR}^{2}-\mathrm{TS}^{2}$
Equating (3) and (4) we get
$\mathrm{QR}^{2}-\mathrm{SQ}^{2}=\mathrm{TR}^{2}-\mathrm{TS}^{2}$
$\mathrm{SQ}=\mathrm{QT}+\mathrm{TS}$
$\therefore \mathrm{QR}^{2}-(2 \mathrm{~T}+\mathrm{TS})^{2}=\mathrm{TR}^{2}-\mathrm{TS}^{2}$
$\mathrm{QR}^{2}-2 \mathrm{~T}^{2}-\mathrm{TS}^{2}-2 \mathrm{QT} . \mathrm{TS}=\mathrm{TR}^{2}-\mathrm{TS}^{2}$
$\therefore 2 \mathrm{R}^{2}=\mathrm{TR}^{2}+\mathrm{QT}^{2}+2 \mathrm{QT} . \mathrm{TS}$
Now equating (5) - (6), we get
$\mathrm{QT}^{2}+\mathrm{RT}^{2}+2 \mathrm{RT} . \mathrm{TP}=\mathrm{QT}^{2}+\mathrm{RT}^{2}+2 \mathrm{QT} . \mathrm{TS}$
\therefore PT.TR $=$ ST.TQ
Hence proved.

Question 5.

In the adjacent figure, $\triangle \mathrm{ABC}$ is right angled at C and $\mathrm{DE} \perp \mathrm{AB}$. Prove that $\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$ and hence find the lengths of AE and DE?

Solution:
In $\triangle \mathrm{ABC}$ \& $\triangle \mathrm{ADE}$
$\angle \mathrm{A}$ is common \& $\angle \mathrm{C}=\angle \mathrm{E}=90^{\circ}$
\therefore by similarity
$\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$

$$
\begin{align*}
\therefore \frac{\mathrm{AB}}{\mathrm{AD}} & =\frac{\mathrm{AC}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{AE}} \\
\frac{13}{3} & =\frac{5}{\mathrm{DE}}=\frac{12}{\mathrm{AE}} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
13 \mathrm{DE} & =3 \times 5 \\
\mathrm{DE} & =\frac{15}{13}
\end{aligned}
$$

Since $\triangle \mathrm{ABC}$ is a right angled triangle.

$$
\begin{aligned}
\mathrm{AB}^{2} & =\mathrm{BC}^{2}+\mathrm{AC}^{2} \\
& =12^{2}+5^{2} \\
& =144+25 \\
& =169 \\
\Rightarrow \quad \mathrm{AB} & =13 \\
\frac{5}{\frac{5}{13}} & =\frac{12}{\mathrm{AE}} \\
5 \mathrm{AE} & =\frac{15}{13} \times 12 \\
\mathrm{AE} & =\frac{15}{13} \times \frac{12}{5} \\
\mathrm{M} & =\mathrm{DE} \\
\mathrm{AE} & =\frac{36}{13}=2.7 \\
\mathrm{DE} & =\frac{15}{13}=1.1
\end{aligned}
$$

Substituting the values of DE and AE in (1) we can prove that

$$
\begin{aligned}
\frac{\mathrm{AB}}{\mathrm{AD}} & =\frac{\mathrm{AC}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{AE}} \\
\frac{13}{3} & =\frac{5}{1 \cdot 1}=\frac{12}{2 \cdot 7}=4 \cdot 3
\end{aligned}
$$

It is proved that $\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$.

Question 6.
In the adjacent figure, $\triangle \mathrm{ACB} \sim \Delta \mathrm{APQ}$. If $\mathrm{BC}=8 \mathrm{~cm}, \mathrm{PQ}=4 \mathrm{~cm}, \mathrm{BA}=6.5 \mathrm{~cm}$ and $\mathrm{AP}=2.8 \mathrm{~cm}$, find CA and AQ .

Solution:
$\triangle \mathrm{ACB} \sim \triangle \mathrm{APQ}$
$\frac{\mathrm{AB}}{\mathrm{AQ}}=\frac{\mathrm{BC}}{\mathrm{PQ}}=\frac{\mathrm{CA}}{\mathrm{AP}}$
$\frac{6.5}{\mathrm{AQ}}=\frac{8}{4}=\frac{\mathrm{CA}}{2.8}$

From (1)

$$
\begin{aligned}
\Rightarrow \quad 4 \mathrm{CA} & =8 \times 2.8 \\
\mathrm{CA} & =\frac{22.4}{4}=5.6 \mathrm{~cm}
\end{aligned}
$$

From (1)

$$
\begin{aligned}
\Rightarrow \quad 8 \mathrm{AQ} & =6.5 \times 4 \\
\mathrm{AQ} & =\frac{26}{8}=3.25 \mathrm{~cm}
\end{aligned}
$$

Question 7.

In figure OPRQ is a square and MLN $=90^{\circ}$. Prove that
(i) $\triangle \mathrm{LOP} \sim \triangle \mathrm{QMO}$
(ii) $\triangle \mathrm{LOP} \sim \triangle \mathrm{RPN}$
(iii) $\triangle \mathrm{QMO} \sim \triangle \mathrm{RPN}$
(iv) $\mathrm{QR}^{2}=\mathrm{MQ} \times \mathrm{RN}$.

Solution:
(i) In $\Delta \mathrm{LOP} \& \Delta \mathrm{QMO}$, we have
$\angle \mathrm{OLP}=\angle \mathrm{MQO}$ (each equal to 90°)
and $\angle \mathrm{LOP}=\angle \mathrm{OMQ}$ (corresponding angles)
$\Delta \mathrm{LOP} \sim \Delta \mathrm{QMO}$ (by AA criterion of similarity)
(ii) In \triangle LOP \& \triangle PRN, we have
$\angle \mathrm{PLO}=\angle \mathrm{NRP}$ (each equal to 90°)
$\angle \mathrm{LPO}=\angle \mathrm{PNR}$ (corresponding angles)
$\Delta \mathrm{LOP} \sim \Delta \mathrm{RPN}$
(iii) In $\triangle \mathrm{QMO} \& \triangle \mathrm{RPN}$.

Since $\triangle \mathrm{LOP} \sim \Delta \mathrm{QMO}$ and $\triangle \mathrm{LOP} \sim \Delta \mathrm{RPN}$
$\angle \mathrm{QMO} \sim \triangle \mathrm{RPN}$
(iv) We have
$\Delta \mathrm{QMO} \sim \Delta \mathrm{RPN}$ (using (iii))
$\frac{\mathrm{MQ}}{\mathrm{RP}}=\frac{\mathrm{QO}}{\mathrm{RN}}(\because \mathrm{PROQ}$ is a square $)$
$\mathrm{QR}^{2}=\mathrm{MQ} \times \mathrm{RN} .[\mathrm{RP}=\mathrm{QO}, \mathrm{QO}=\mathrm{QR}]$

Question 8.

If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ such that area of $\triangle \mathrm{ABC}$ is $9 \mathrm{~cm}^{2}$ and the area of $\triangle \mathrm{DEF}$ is $16 \mathrm{~cm}^{2}$ and $\mathrm{BC}=2.1$ cm . Find the length of $E F$.
Solution:
Since the area of two similar triangles is equal to the ratio of the squares of any two corresponding
sides.

$$
\begin{aligned}
\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DEF}} & =\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}} \\
\frac{9}{16} & =\frac{(2.1)^{2}}{\mathrm{EF}^{2}} \\
\frac{3}{4} & =\frac{2.1}{\mathrm{EF}} \\
3 \mathrm{EF} & =8.4 \\
\mathrm{EF} & =\frac{8.4}{3}=2.8 \mathrm{~cm} .
\end{aligned}
$$

Note: Taking square root on both sides we get

$$
\mathrm{EF}=2.8 \mathrm{~cm}
$$

Question 9.
Two vertical poles of heights 6 m and 3 m are erected above a horizontal ground AC. Find the value of y.

Intranet

Solution:
$\triangle \mathrm{PAC}, \triangle \mathrm{QBC}$ are similar 6 triangles

$$
\begin{align*}
\therefore & \frac{\mathrm{PA}}{\mathrm{QB}} & =\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{PC}}{\mathrm{QC}} \\
& \frac{6}{y} & =\frac{\mathrm{AC}}{\mathrm{BC}} \\
\Rightarrow & (\mathrm{AC}) y & =6 \mathrm{BC} \tag{1}
\end{align*}
$$

$\triangle \mathrm{ACR} \& \triangle \mathrm{ABQ}$ are similar triangles.

$$
\begin{aligned}
& \frac{\mathrm{CR}}{\mathrm{QB}}=\frac{\mathrm{AC}}{\mathrm{AB}} \\
& \frac{3}{y}=\frac{\mathrm{AC}}{\mathrm{AB}} \\
& \Rightarrow \quad(\mathrm{AC}) y=3 \mathrm{AB} \\
&(1)=(2) \Rightarrow 6 \mathrm{BC}=3 \mathrm{AB} \\
& 2 \mathrm{BC}=\mathrm{AB} \\
& \Rightarrow \mathrm{AC}=\mathrm{AB}+\mathrm{BC} \\
&=2 \mathrm{BC}+\mathrm{BC} \\
& \begin{array}{l}
\mathrm{AC}
\end{array} \\
& \begin{array}{l}
\text { Substituting } \mathrm{AC}
\end{array} \\
& \begin{array}{l}
\text { (AC) }=3 \mathrm{BC}
\end{array} \\
& \begin{array}{l}
3(\mathrm{BC}) \mathrm{y}=66 \\
\left.\mathrm{y}=\frac{6}{3}=2 \mathrm{BC}\right)
\end{array}
\end{aligned}
$$

Question 10.

Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{2}{3}$ of the corresponding sides of the triangle PQR (scale factor $\frac{2}{3}$).
Solution:
Given a triangle PQR , we are required to construct another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of the triangle PQR .

Steps of construction:
(1) Draw any ray QX making an acute angle with QR on the side opposite to the vertex P .
(2) Locate 3 (the greater of 2 and 3 in $\frac{2}{3}$) points. $\mathrm{Q}_{1} \mathrm{Q}_{2}, \mathrm{Q}_{2}$ on QX so that $\mathrm{QQ}_{1}=\mathrm{Q}_{1} \mathrm{Q}_{2}=\mathrm{Q}_{2} \mathrm{Q}_{3}$
(3) Join $Q_{3} R$ and draw a line through Q_{2} (the second point, 2 being smaller of 2 and 3 in $\frac{2}{3}$) parallel to $Q_{3} R$ to intersect $Q R$ at R '.
(4) Draw line through R' parallel to the line RP to intersect QP at P'.

The $\triangle \mathrm{P}^{\prime} \mathrm{QR}^{\prime}$ is the required triangle each of the whose sides is $\frac{2}{3}$ of the corresponding sides of 3 $\triangle P Q R$.

Question 11.

Construct a triangle similar to a given triangle LMN with its sides equal to $\frac{4}{5}$ of the corresponding sides of the triangle LMN (scale factor $\frac{4}{5}$).
Solution:
Given a triangle LMN, we are required to construct another triangle whose sides are $\frac{4}{5}$ of the corresponding sides of the $\Delta \mathrm{LMN}$.

Steps of construction:
(1) Draw any ray making an acute angle to the vertex L .
(2) Locate 5 points (greater of 4 and 5 in $\frac{4}{5}$) $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$, and M_{5} and MX so that $\mathrm{MM}_{1}=$ $\mathrm{M}_{1} \mathrm{M}_{2}=\mathrm{M}_{2} \mathrm{M}_{3}=\mathrm{M}_{3} \mathrm{M}_{4}=\mathrm{M}_{4} \mathrm{M}_{5}$
(3) Join $\mathrm{M}_{5} \mathrm{~N}$ and draw a line parallel to $\mathrm{M}_{5} \mathrm{~N}$ through M_{4} (the fourth point, 4 being the smaller of 4 and 5 in $\frac{4}{5}$) to intersect $\mathrm{MN} \mathrm{atN}^{\prime}$.
(4) Draw a line through N^{1} parallel to the line NL to intersect ML and L^{\prime}. Then $\Delta L^{\prime} M N^{\prime}$ is the required triangle each of the whose sides is $\frac{4}{5}$ of the corresponding sides of $\Delta \mathrm{LMN}$.

Question 12.

Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{6}{5}$ of the corresponding sides of the triangle ABC (scale factor $\frac{6}{4}$).
Solution:
$\triangle \mathrm{ABC}$ is the given triangle. We are required to construct another triangle whose sides are $\frac{6}{5}$ of the corresponding sides of the given triangle ABC
Steps of construction:

Reader antenna sends electric signal to the tag antenna

Passive RFID using EM-wave transmission

(1) Draw any ray BX making an acute angle with BC on the opposite side to the vertex A . (2) Locate 6 points (the greater of 6 and 5 in $\frac{6}{5}$) $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}, \mathrm{~B}_{5}, \mathrm{~B}_{6}$ so that $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=$ $\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{4} \mathrm{~B}_{5}=\mathrm{B}_{5} \mathrm{~B}_{6}$.
(3) Join B_{5} (the fifth point, 5 being smaller of 5 and 6 in $\frac{6}{5}$) to C and draw a live through B_{6} parallel to $\mathrm{B}_{5} \mathrm{C}$ intersecting the extended line segment BC at C^{1}.
(4) Draw a line through C' parallel to CA intersecting the extended line segment BA at A'.

Then $\triangle A^{\prime} B C^{\prime}$ is the required triangle each of whose sides is $\frac{6}{5}$ of the corresponding sides of the given triangle ABC .

Question 13.

Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{3}$ of the corresponding sides of the triangle PQR (scale factor $\frac{7}{3}$).
Solution:
Given a triangle $\triangle \mathrm{PQR}$. We have to construct another triangle whose sides are $\frac{7}{3}$ of the corresponding sides of the given $\triangle \mathrm{PQR}$.

Steps of construction:
(1) Draw any ray QX making an acute angle with QR on the opposite side to the vertex P .
(2) Locate 7 points (the greater of 7 and 3 in $\frac{7}{3}$) $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}, \mathrm{Q}_{5}, \mathrm{Q}_{6}$, and Q_{7} so that $\mathrm{QQ}_{2}=$
$\mathrm{Q}_{1} \mathrm{Q}_{2}=\mathrm{Q}_{2} \mathrm{Q}_{3}=\mathrm{Q}_{3} \mathrm{Q}_{4}=\mathrm{Q}_{4} \mathrm{Q}_{5}=\mathrm{Q}_{5} \mathrm{Q}_{6}$
$=\mathrm{Q}_{6} \mathrm{Q}_{7}$
(3) Join Q_{3} to R and draw a line segment through Q_{7} parallel to $Q_{3} R$ intersecting the extended line segment $Q R$ at R^{\prime}.
(4) Draw a line segment through R^{\prime} parallel to PR intersecting the extended line segment QP at P '. Then $\triangle \mathrm{P}^{\prime} \mathrm{QR}$ ' is the required triangle each of whose sides is $\frac{7}{3}$ of the corresponding sides of the given triangle.

Ex 4.2

Question 1.
In $\triangle A B C, D$ and E are points on the sides $A B$ and $A C$ respectively such that $D E \| B C$
(i) If $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{3}{4}$ and $\mathrm{AC}=15 \mathrm{~cm}$ find AE .
(ii) If $\mathrm{AD}=8 \mathrm{x}-7, \mathrm{DB}=5 \mathrm{x}-3, \mathrm{AE}=4 \mathrm{x}-3$ and $\mathrm{EC}=3 \mathrm{x}-1$, find the value of x .

Solution:
(i) If $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{3}{4}, \mathrm{AC}=15 \mathrm{~cm}, \mathrm{DE} \| \mathrm{BC}$, then by basic proportionality theorem.

$$
\begin{aligned}
\frac{\mathrm{AD}}{\mathrm{AB}} & =\frac{\mathrm{AE}}{\mathrm{AC}} \\
\frac{3}{7} & =\frac{\mathrm{AE}}{15} \\
7 \mathrm{AE} & =3 \times 15^{\mathrm{B}}
\end{aligned}
$$

-

$$
\mathrm{AE}=\frac{45}{7}=6.43 \mathrm{~cm}
$$

(ii) By basic proportionality theorem.

$$
\begin{aligned}
& \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \\
& \frac{8 x-7}{5 x-3}=\frac{4 x-3}{3 x-1} \\
&(8 x-7)(3 x-1)=(5 x-3)(4 x-3) \\
& 24 x^{2}-21 x-8 x+7=20 x^{2}-12 x-15 x+9 \\
& 24 x^{2}-29 x+7-20 x^{2}+27 x-9=0 \\
& 4 x^{2}-2 x-2=0 \\
& 2 x^{2}-x-1=0 \\
&(2 x+1)(x-1)=0 \\
& \mathrm{x}=1, \frac{-1}{2} \Rightarrow \mathrm{x}=1
\end{aligned}
$$

Question 2.

ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and P, Q are points on AD and BC respectively, such that $\mathrm{PQ} \|$ DC if $\mathrm{PD}=18 \mathrm{~cm}, \mathrm{BQ}=35 \mathrm{~cm}$ and $\mathrm{QC}=15 \mathrm{~cm}$, find AD .
Solution:
Any line parallel to the parallel sides of a trapezium dives the non-parallel sides proportionally.
\therefore By thales theorem, In $\triangle A C D$, we have

$$
\begin{equation*}
\frac{\mathrm{AP}}{\mathrm{PD}}=\frac{\mathrm{AG}}{\mathrm{GC}} \Rightarrow \frac{x}{18}=\frac{\mathrm{AG}}{\mathrm{GC}} \tag{1}
\end{equation*}
$$

In DABC , we have

$$
\begin{equation*}
\frac{\mathrm{AG}}{\mathrm{GC}}=\frac{\mathrm{BQ}}{\mathrm{QC}} \Rightarrow \frac{\mathrm{AG}}{\mathrm{GC}}=\frac{35}{15} \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
\begin{aligned}
\frac{x}{18} & =\frac{35^{7}}{15_{3}} \Rightarrow 3 x=126 \\
x & =42 \\
\mathrm{AD} & =x+18=(42+18)=60 \mathrm{~cm}
\end{aligned}
$$

Question 3.

In $\triangle \mathrm{ABC}, \mathrm{D}$ and E are points on the sides AB and AC respectively. For each of the following cases show that $\mathrm{DE} \| \mathrm{BC}$
(i) $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AD}=8 \mathrm{~cm}, \mathrm{AE}=12 \mathrm{~cm}$ and $\mathrm{AC}=18 \mathrm{~cm}$.
(ii) $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AD}=1.4 \mathrm{~cm}, \mathrm{AC}=7.2 \mathrm{~cm}$ and $\mathrm{AE}=1.8 \mathrm{~cm}$.

Solution:
(i) In $\triangle \mathrm{ABC}, \mathrm{AB}=12 \mathrm{~cm}$,

$$
\begin{aligned}
\mathrm{AD} & =8 \mathrm{~cm}, \\
\mathrm{AE} & =12 \mathrm{~cm}, \mathrm{~B} \\
\mathrm{AC} & =18 \mathrm{~cm} . \\
\text { If } \frac{\mathrm{AB}}{\mathrm{AD}} & =\frac{\mathrm{AC}}{\mathrm{AE}} \Rightarrow \frac{12}{8}=\frac{18}{12} \\
\Rightarrow \quad \frac{3}{2} & =\frac{3}{2}
\end{aligned}
$$

\therefore It is satisfied
$\therefore \mathrm{DE} \mid \overrightarrow{\mathrm{BC}}$
(ii) $\mathrm{AB}=5.6 \mathrm{~cm}$,
$\mathrm{AD}=1.4 \mathrm{~cm}$,
$\mathrm{AC}=7.2 \mathrm{~cm}$,
$\mathrm{AE}=1.8 \mathrm{~cm}$.
If $\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}$ is satisfied then $\mathrm{BC} \| \mathrm{DE}$ $\frac{5.6}{1.4}=\frac{7.2}{1.8}$
$5.6 \times 1.8=1.4 \times 7.2$
$10.08=10.08$
L.H.S $=$ R.H.S
\therefore It is satisfied
$\therefore \mathrm{DE} \mid \mathrm{BC}$
Question 4.
In fig. if $P Q \| B C$ and $P R \| C D$ prove that
(i) $\frac{\mathbf{A R}}{\mathbf{A D}}=\frac{\mathbf{A Q}}{\mathbf{A B}}=$ (ii) $\frac{\mathbf{Q B}}{\mathbf{A Q}}=\frac{\mathbf{D R}}{\mathbf{A R}}$.

Solution:

In the figure $\mathrm{PQ}\|\mathrm{BC}, \mathrm{PR}\| \mathrm{CD}$.
(i) In $\triangle \mathrm{ADC}$, by BPT $\frac{\mathrm{AR}}{\mathrm{AD}}=\frac{\mathrm{AP}}{\mathrm{AC}}$

In $\triangle \mathrm{ACB}$, by $\mathrm{BPT} \frac{\mathrm{AP}}{\mathrm{AC}}=\frac{\mathrm{AQ}}{\mathrm{AB}}$
From (1) and (2) we get

$$
\begin{aligned}
\frac{\mathrm{AR}}{\mathrm{AD}} & =\frac{\mathrm{AP}}{\mathrm{AC}}=\frac{\mathrm{AQ}}{\mathrm{AB}} \\
\Rightarrow \quad \frac{\mathrm{AR}}{\mathrm{AD}} & =\frac{\mathrm{AQ}}{\mathrm{AB}}
\end{aligned}
$$

It is proved.
(ii) In $\triangle \mathrm{ABC}, \frac{\mathrm{QB}}{\mathrm{AQ}}=\frac{\mathrm{PC}}{\mathrm{AP}}$ by BPT

In $\triangle \mathrm{ACD}, \frac{\mathrm{PC}}{\mathrm{AP}}=\frac{\mathrm{DR}}{\mathrm{AR}}$ by BPT .
From (1) \& (2)

$$
\begin{aligned}
\frac{\mathrm{QB}}{\mathrm{AQ}} & =\frac{\mathrm{PC}}{\mathrm{AP}}=\frac{\mathrm{DR}}{\mathrm{AR}} \\
\therefore \frac{\mathrm{QB}}{\mathrm{AQ}} & =\frac{\mathrm{DR}}{\mathrm{AR}}
\end{aligned}
$$

It is proved.

Question 5.

Rhombus PQRB is inscribed in $\triangle \mathrm{ABC}$ such that $\angle \mathrm{B}$ is one of its angle. P, Q and R lie on AB, AC and $B C$ respectively. If $A B=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, find the sides $P Q, R B$ of the rhombus.
Solution:
In $\triangle \mathrm{CRQ}$ and $\Delta \mathrm{CBA}$
$\angle \mathrm{CRQ}=\angle \mathrm{CBA}($ as $\mathrm{RQ} \| \mathrm{AB})$
$\angle \mathrm{CQR}=\angle \mathrm{CAB}$ (as RQ $\| \mathrm{AB}$)

$$
\begin{gathered}
\therefore \Delta \mathrm{CRQ} \cong \Delta \mathrm{CBA} \\
\therefore \frac{\mathrm{CR}}{\mathrm{CB}}=\frac{\mathrm{RQ}}{\mathrm{BA}} \\
\text { Let side of Rhombus be ' } a \text { ' } \\
\therefore \frac{6-a}{6}=\frac{a}{12} \text { A }
\end{gathered}
$$

$\Rightarrow 72-12 \mathrm{a}=6 \mathrm{a}$
$\Rightarrow 18 \mathrm{a}=72$
$\mathrm{a}=4$
Side of rhombus $\mathrm{PQ}, \mathrm{RB}=4 \mathrm{~cm}, 4 \mathrm{~cm}$.

Question 6.

In trapezium $\mathrm{ABCD}, \mathrm{AB} \| \mathrm{DC}, \mathrm{E}$ and F are points on non-parallel sides AD and BC respectively, such that $\mathrm{EF} \| \mathrm{AB}$. Show that $\frac{A E}{E D}=\frac{B F}{F C}$
Solution:

Network Applications		
Applications of Internet.	Applications of Intranet	Applications of Extranet
Download programs and files	Sharing of company policies $/$ rules and regulations	Customer communications
Social media	Access employee database	Online education/ training
E-Banking	Distribution of circulars/Office Orders	Account status enquiry
E-Commerce	Access product and customer data	Inventory enquiry
E-mail	Submission of reports	Online discussion

Question 7.

In figure $\mathrm{DE} \| \mathrm{BC}$ and $\mathrm{CD} \| \mathrm{EF}$. Prove that $\mathrm{AD}^{2}=\mathrm{AB} \times \mathrm{AF}$.

Solution:
$\mathrm{TPT} \Rightarrow \quad \mathrm{AD}^{2}=\mathrm{AB} \times \mathrm{AF}$

$$
\triangle \mathrm{AFE} \cong \triangle \mathrm{ADC}
$$

$$
\begin{equation*}
\frac{\mathrm{AF}}{\mathrm{AD}}=\frac{\mathrm{AE}}{\mathrm{AC}} \tag{1}
\end{equation*}
$$

$\triangle \mathrm{ADE} \cong \triangle \mathrm{ABC}$

$$
\begin{equation*}
\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}} \tag{2}
\end{equation*}
$$

Equating RHS of (1) and (2)

$$
\frac{\mathrm{AF}}{\mathrm{AD}}=\frac{\mathrm{AD}}{\mathrm{AB}}
$$

$\Rightarrow \quad \mathrm{AD}^{2}=\mathrm{AF} \times \mathrm{AB}$
It is proved.

Question 8.
In a $\triangle A B C, A D$ is the bisector of $\angle A$ meeting side $B C$ at D, if $A B=10 \mathrm{~cm}, A C=14 \mathrm{~cm}$ and $B C=6$ cm , find BD and DC .
Solution:

Let $\lfloor\mathrm{BAD}=\lfloor\mathrm{CAD}=\theta$
Assume BD $=y$

$$
\mathrm{BC}-\mathrm{CD}=y
$$

$$
6-\mathrm{CD}=y
$$

$\mathrm{CD}=6-\mathrm{y}$
Assume $\lfloor\mathrm{ADB}=\alpha$

$$
\mathrm{ADC}=180-\propto
$$

In $\triangle \mathrm{ABD}, \frac{\mathrm{BD}}{\sin \theta}=\frac{\mathrm{AB}}{\sin \propto} \Rightarrow \frac{y}{\sin \theta}=\frac{10}{\sin \alpha}$
$\Rightarrow \sin \propto=\frac{10}{y} \sin \theta$
In $\triangle A C D, \frac{C D}{\sin \theta}=\frac{A C}{\sin (180-\propto)}$
$\Rightarrow \quad \frac{6-y}{\sin \theta}=\frac{14}{\sin \alpha}$

Substituting (1) in (2),
$\frac{6-y}{\sin \theta}=\frac{14}{\frac{10}{y} \sin \theta} \Rightarrow 6-y=\frac{14 y}{10}$
$\Rightarrow y\left(1+\frac{14}{10}\right)=6 \Rightarrow y\left(\frac{24}{10}\right)=6$
$\Rightarrow y \frac{60}{24} \Rightarrow y=2.5$
$\therefore \mathrm{BD}=2.5 \mathrm{~cm}$ and $\mathrm{CD}=3.5 \mathrm{~cm}$

Question 9.

Check whether AD is bisector of $\angle \mathrm{A}$ of $\triangle \mathrm{ABC}$ in each of the following
(i) $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}, \mathrm{BD}=1.5 \mathrm{~cm}$ and $\mathrm{CD}=3.5 \mathrm{~cm}$.
(ii) $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}, \mathrm{BD}=1.6 \mathrm{~cm}$ and $\mathrm{CD}=2.4 \mathrm{~cm}$.

Solution:
$\mathrm{AB}=5 \mathrm{~cm}$,
$\mathrm{AC}=10 \mathrm{~cm}$,
$\mathrm{BD}=1.5 \mathrm{~cm}$,
$\mathrm{CD}=3.5 \mathrm{~cm}$,
By ABT , check whether $\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}$

$$
\begin{aligned}
\frac{1.5 \times 10}{3.5 \times 10} & =\frac{5}{10} \\
\frac{15^{3}}{35_{7}} & \neq \frac{\$ 5}{10_{2}} \\
\frac{3}{7} & \neq \frac{1}{2}
\end{aligned}
$$

$\therefore \mathrm{AD}$ is not the bisector of $\angle \mathrm{BAC}$.
(ii)

$$
\begin{aligned}
\mathrm{AB} & =4 \mathrm{~cm}, \\
\mathrm{AC} & =6 \mathrm{~cm}, \\
\mathrm{BD} & =1.6 \mathrm{~cm}, \\
\mathrm{CD} & =2.4 \mathrm{~cm} .
\end{aligned}
$$

By $A B T$, check

$$
\begin{aligned}
& \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{1.6 \times 10}{2.4 \times 10}=\frac{16^{2}}{24_{3}}=\frac{2}{3} \\
& \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{A^{2}}{\emptyset_{3}}=\frac{2}{3}
\end{aligned}
$$

$\therefore \mathrm{AD}$ is the bisector of $\triangle \mathrm{ABC}$.

Question 10.
In figure $\angle \mathrm{QPC}=90^{\circ}$, PS is its bisector. If $\mathrm{ST} \perp \mathrm{PR}$, prove that $\mathrm{ST} \times(\mathrm{PQ}+\mathrm{PR})=\mathrm{PQ} \times \mathrm{PR}$.

Solution:

In $\triangle \mathrm{PQR}$, since PS is angle bisector \& applying angle.
bisector theorem $\frac{P R}{P Q}=\frac{S R}{S Q}, ~$
$\Delta \mathrm{RTS} \approx \Delta \mathrm{RPQ}$ (similarity)

$$
\begin{equation*}
\text { ; } \quad \frac{\mathrm{SR}}{\mathrm{SQ}}=\frac{\mathrm{TR}}{\mathrm{TP}} \tag{1}
\end{equation*}
$$

Given $\angle \mathrm{PTS}=90^{\circ}$
\therefore In \triangle PTS, since $\angle \mathrm{TPS}=45^{\circ}$ (PS - angle bisector)

$$
\angle \mathrm{PST} \text { also }=45^{\circ}
$$

$\therefore \angle \mathrm{PTS}$ is an isosceles \triangle

$$
\begin{equation*}
\Rightarrow \mathrm{PT}=\mathrm{ST} \tag{2}
\end{equation*}
$$

Using (2) in (1), we get $\frac{S R}{S Q}=\frac{T R}{S T}$

$$
\begin{align*}
\mathrm{TR} & =\mathrm{PR}-\mathrm{PT} \tag{3}\\
& =\mathrm{PR}-\mathrm{ST}
\end{align*}
$$

From (A) \& (3), we get $\frac{P R}{P Q}=\frac{S R}{S Q}=\frac{T R}{S T}$

$$
\begin{aligned}
\therefore \quad \mathrm{PR} \times \mathrm{ST} & =\mathrm{TR} \times \mathrm{PQ} \\
& =(\mathrm{PR}-\mathrm{ST}) \times \mathrm{PQ} \\
& =\mathrm{PR} \times \mathrm{PQ}-\mathrm{ST} \times \mathrm{PQ}
\end{aligned}
$$

$\therefore \mathrm{PR} \times \mathrm{ST}+\mathrm{ST} \times \mathrm{PQ}=\mathrm{PR} \times \mathrm{PQ}$

$$
\Rightarrow \mathrm{ST}(\mathrm{PR}+\mathrm{PQ})=\mathrm{PR} \times \mathrm{PQ}
$$

Hence proved.

Question 11.

ABCD is a quadrilateral in which $\mathrm{AB}=\mathrm{AD}$, the bisector of $\angle \mathrm{BAC}$ and $\angle \mathrm{CAD}$ intersect the sides BC and $C D$ at the points E and F respectively. Prove that $E F \| B D$.
Solution:
By angle bisector theorem in $\triangle \mathrm{ABC}$,

$$
\begin{equation*}
\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{AB}}{\mathrm{AC}} \tag{1}
\end{equation*}
$$

By angle bisector theorem in $\triangle \mathrm{ADC}$,

$$
\begin{equation*}
\frac{\mathrm{AD}}{\mathrm{AC}}=\frac{\mathrm{DF}}{\mathrm{FC}} \tag{2}
\end{equation*}
$$

$$
\text { Since } A B=A D \text {, equating }(1) \&(2)
$$

$$
\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{DF}}{\mathrm{FC}}
$$

In $\triangle \mathrm{BDC}$, as EF is such that,

$$
\frac{\mathrm{DF}}{\mathrm{FC}}=\frac{\mathrm{BE}}{\mathrm{EC}}
$$

$\therefore \mathrm{EF} \| \mathrm{BD}$.

Question 12.

Construct a $\triangle P Q R$ which the base $\mathrm{PQ}=4.5 \mathrm{~cm}, \angle \mathrm{R}=35^{\circ}$ and the median from R to RG is 6 cm .
Solution:
Construction:
Step (1) Draw a line segment $\mathrm{PQ}=4.5 \mathrm{~cm}$
Step (2) At P, draw PE such that $\angle \mathrm{QPE}=35^{\circ}$.
Step (3) At P, draw PF such that $\angle E P F=90^{\circ}$.
Step (4) Draw \perp^{r} bisector to PQ which intersects PF at O .
Step (5) With O centre OP as raidus draw a circle.
Step (6) From G mark arcs of 6 cm on the circle.
Mark them as R and S.
Step (7) Join PR and RQ.

Step (8) PQR is the required triangle.

Rough diagram

Question 13.

Construct a $\triangle \mathrm{PQR}$ in which $\mathrm{QR}=5 \mathrm{~cm}, \mathrm{P}=40^{\circ}$ and the median PG from P to QR is 4.4 cm . Find the length of the altitude from P to QR .
Solution:
Construction:
Step (1) Draw a line segment $\mathrm{QR}=5 \mathrm{~cm}$.
Step (2) At Q, draw QE such that $\angle \mathrm{RQE}=40^{\circ}$.
Step (3) At Q, draw QF such that $\angle \mathrm{EQF}=90^{\circ}$.
Step (4) Draw perpendicular bisector to QR , which intersects QF at O .
Step (5) With O as centre and OQ as raidus, draw a circle.
Step (6) From G mark arcs of radius 4.4 cm on the circle. Mark them as P and P'.
Step (7) Join PQ and PR.
Step (8) PQR is the required triangle.
Step(9) From P draw a line PN which is \perp^{r} to LR. LR meets $P N$ at M.

Step (10) The length of the altitude is $\mathrm{PM}=2.2 \mathrm{~cm}$.

Question 14.

Construct a $\triangle \mathrm{PQR}$ such that $\mathrm{QR}=6.5 \mathrm{~cm}, \angle \mathrm{P}=60^{\circ}$ and the altitude from P to QR is of length 4.5 cm . Solution:

Construction:
Steps (1) Draw $\mathrm{QR}=6.5 \mathrm{~cm}$.
Steps (2) Draw $\angle \mathrm{RQE}=60^{\circ}$.
Steps (3) Draw $\angle \mathrm{FQE}=90^{\circ}$.
Steps (4) Draw \perp^{r} bisector to QR .
Steps (5) The $\perp{ }^{\mathrm{r}}$ bisector meets QF at O .
Steps (6) Draw a circle with O as centre and OQ as raidus.
Steps (7) Mark an arc of 4.5 cm from G on the \perp^{r} bisector. Such that it meets $L M$ at N.
Steps (8) Draw PP' $\|$ QR through N.
Steps (9) It meets the circle at P, P'.
Steps (10) Join PQ and PR.
Steps (11) $\triangle \mathrm{PQR}$ is the required triangle.

Question 15.

Construct a $\triangle \mathrm{ABC}$ such that $\mathrm{AB}=5.5 \mathrm{~cm}, \mathrm{C}=25^{\circ}$ and the altitude from C to AB is 4 cm .
Solution:

Construction:
Step (1) Draw $\overline{\mathrm{AB}}=5.5 \mathrm{~cm}$
Step (2) Draw $\angle \mathrm{BAE}=25^{\circ}$
Step (3) Draw $\angle \mathrm{FAE}=90^{\circ}$
Step (4) Draw \perp^{r} bisector to AB.
Step (5) The \perp^{r} bisector meets AF at O .
Step (6) Draw a circle with O as centre and OA as radius.
Step (7) Mark an arc of length 4 cm from G on the \perp^{r} bisector and name as N .
Step (8) Draw $\mathrm{CC}^{1} \| \mathrm{AB}$ through N .
Step (9) Join AC \& BC.
Step (10) $\triangle \mathrm{ABC}$ is the required triangle.

Question 16.

Draw a triangle ABC of base $\mathrm{BC}=5.6 \mathrm{~cm}, \angle \mathrm{~A}=40^{\circ}$ and the bisector of $\angle \mathrm{A}$ meets BC at D such that CD $=4 \mathrm{~cm}$.
Solution:
Construction:
Steps (1) Draw a line segment $\mathrm{BC}=5.6 \mathrm{~cm}$.
Steps (2) At B, draw BE such that $\angle \mathrm{CBE}=60^{\circ}$.
Steps (3) At B draw BF such that $\angle \mathrm{EBF}=90^{\circ}$.

Steps (4) Draw $\perp{ }^{\mathrm{r}}$ bisector to BC , which intersects BF at 0 .
Steps (5) With O as centre and $O B$ as radius draw a circle.
Steps (6) From C, mark an arc of 4 cm on BC at D.
Steps (7) The $\perp{ }^{r}$ bisector intersects the circle at I. Join ID.
Steps (8) ID produced meets the circle at A.
Now join AB and $\mathrm{AC} . \triangle \mathrm{ABC}$ is the required triangle.

Question 17.

Draw $\triangle \mathrm{PQR}$ such that $\mathrm{PQ}=6.8 \mathrm{~cm}$, vertical angle is 50° and the bisector of the vertical angle meets the base at D where $\mathrm{PD}=5.2 \mathrm{~cm}$.
Solution:

Rough diagram

Steps (1) Draw a line segment $\mathrm{PQ}=6.8 \mathrm{~cm}$

Steps (2) At P , draw PE such that $\angle \mathrm{QPE}=50^{\circ}$.
Steps (3) At P, draw PF such that $\angle \mathrm{FPE}=90^{\circ}$.
Step (4) Draw \perp^{r} bisector to PQ, which intersects PF at 0 .
Step (5) With O as centre and OP as radius draw a circle.
Step (6) From P mark an arc of 5.2 cm on PQ at D.
Step (7) The \perp^{r} bisector intersects the circle at I. Join ID.
Step (8) ID produced meets the circle at R. Now join $P R \& Q R . \triangle P Q R$ is the required triangle.

Ex 4.3

Question 1.

A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?
Solution:
Using Pythagoras theorem

$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$=(18)^{2}+(24)^{2}$
$=324+576$
$=900$
$\mathrm{AC}=\sqrt{900}=30 \mathrm{~m}$
\therefore The distance from the starting point is 30 m .

Question 2.

There are two paths that one can choose to go from Sarah's house to James house. One way is to take C street, and the other way requires to take A street and then B street. How much shorter is the direct path along C street? (Using figure).

Solution:
By using Pythagoras theorem
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$=2^{2}+(1.5)^{2}$
$=4+2.25$
$=6.25$
$\mathrm{AC}=2.5$ miles .
If one chooses C street the distance from James house to Sarah's house is 2.5 miles
If one chooses A street and B street he has to go $2+1.5=3.5$ miles.
$2.5<3.5,3.5-2.5=1$ Through C street is shorter by 1.0 miles.
\therefore The direct path along C street is shorter by 1 mile.

Question 3.

To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearest meter, how many meters would be saved if it were possible to make a way through the pond?
Solution:
By using Pythagoras

$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$=34^{2}+41^{2}$
$=1156+1681$
$=2837$
$\mathrm{AC}=53.26 \mathrm{~m}$

Through B one must walk $34+41=75 \mathrm{~m}$ walking through a pond one must comes only 53.2 m
\therefore The difference is $(75-53.26) \mathrm{m}=21.74 \mathrm{~m}$
\therefore To the nearest, one can save 21.74 m .

Question 4.

In the rectangle $\mathrm{WXYZ}, \mathrm{XY}+\mathrm{YZ}=17 \mathrm{~cm}$, and $\mathrm{XZ}+\mathrm{YW}=26 \mathrm{~cm}$. Calculate the length and breadth of the rectangle?

Solution:
$\mathrm{XY}+\mathrm{YZ}=17 \mathrm{~cm}$
$\mathrm{XZ}+\mathrm{YW}=26 \mathrm{~cm}$
(2) $\Rightarrow \mathrm{XZ}=13, \mathrm{YW}=13$
(\because In rectangle diagonals are equal).
(1) $\Rightarrow \mathrm{XY}=5, \mathrm{YZ}=12 \mathrm{XY}+\mathrm{YZ}=17$
\Rightarrow Using Pythagoras theorem
$5^{2}+12^{2}=25+144=169=13^{2}$
\therefore In $\triangle X Y Z=13^{2}=5^{2}+12^{2}$ it is verified
\therefore The length is 12 cm and the breadth is 5 cm .

Question 5.

The hypotenuse of a right triangle is 6 m more than twice of the shortest side. If the third side is 2 m less than the hypotenuse, find the sides of the triangle?
Solution:
Let a is the shortest side.
c is the hypotenuse
b is the third side.

$$
\begin{aligned}
c= & 2 a+6 \\
b & =c-2 \\
& =2 a+6-2 \\
& =2 a+4 \\
c^{2} & =a^{2}+b^{2} \\
& (\text { Using pythagoras theorem }) \\
& =a^{2}+(2 a+4)^{2} \\
(2 a+6)^{2} & =a^{2}+(2 a)^{2}+2(2 a) 4+4^{2} \\
(2 a)^{2}+2(2 a)(6)+6^{2} & =a^{2}+(2 a)^{2}+16 a+16 \\
24 a+36= & a^{2}+16 a+16 \\
a^{2}+16 a-24 a+16 & -36=0 \\
a^{2}-8 a-20 & =0 \\
(a-10)(a+2)= & 0 \\
M & =10,-2, N+10 \\
b & =2 a+4=2(10)+4=24 \mathrm{~m} \\
c & =2 a+6=2(10)+6=26 \mathrm{~m}
\end{aligned}
$$

\therefore The sides of the triangle are $10 \mathrm{~m}, 24 \mathrm{~m}, 26 \mathrm{~m}$.
Verification $26^{2}=10^{2}+24^{2}$
$676=100+576=676$

Question 6.

5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.
Solution:
Let the distance by which top of the slide moves upwards be assumed as ' x '.

From the diagram, $\mathrm{DB}=\mathrm{AB}-\mathrm{AD}$
$=3-1.6 \Rightarrow \mathrm{DB}=1.4 \mathrm{~m}$
also $\mathrm{BE}=\mathrm{BC}+\mathrm{CE}$
$=4+\mathrm{x}$
$\therefore \mathrm{DBE}$ is a right angled triangle
$\mathrm{DB}^{2}+\mathrm{BE}^{2}=\mathrm{DE}^{2} \Rightarrow(1.4)^{2}+(4+\mathrm{x})^{2}=5^{2}$
$\Rightarrow(4+x)^{2}=25-1.96 \Rightarrow(4+x)^{2}=23.04$
$\Rightarrow 4+x=\sqrt{23.04}=4.8$
$\Rightarrow \mathrm{x}=4.8-4 \Rightarrow \mathrm{x}=0.8 \mathrm{~m}$

Question 7.

The perpendicular PS on the base $Q R$ of $\triangle P Q R$ intersects $Q R$ at S, such that $Q S=3$ SR. Prove that $2 \mathrm{PQ}^{2}=2 \mathrm{PR}^{2}+\mathrm{QR}^{2}$.
Solution:

$$
\begin{aligned}
\mathrm{QS}+\mathrm{SR} & =\mathrm{QR} \\
\mathrm{QS} & =3 \mathrm{SR} \text { (given) } \\
4 \mathrm{SR} & =\mathrm{QR} \\
\mathrm{SR} & =\frac{\mathrm{QR}}{4} \\
\& \quad \mathrm{QS} & =3 \mathrm{SR} \\
& =\frac{3 \mathrm{QR}}{4}
\end{aligned}
$$

In $\triangle \mathrm{PQS}$,
$\mathrm{PQ}^{2}=\mathrm{PS}^{2}+\mathrm{QS}^{2}$
In $\triangle \mathrm{PSR}$,
$\mathrm{PR}^{2}=\mathrm{PS}^{2}+\mathrm{SR}^{2}$
(1) $-(2) \Rightarrow \mathrm{PQ}^{2}-\mathrm{PR}^{2}=\mathrm{QS}^{2}-\mathrm{SR}^{2}$

$$
\begin{aligned}
\therefore(3) \Rightarrow \mathrm{PQ}^{2}-\mathrm{PR}^{2} & =\frac{9}{16} \mathrm{QR}^{2}-\frac{\mathrm{QR}^{2}}{16} \\
& =\frac{8 \mathrm{QR}^{2}}{16}=\frac{\mathrm{QR}^{2}}{2} \\
2 \mathrm{PQ}^{2}-2 \mathrm{PR}^{2} & =\mathrm{QR}^{2} \\
2 \mathrm{PQ}^{2} & =\mathrm{QR}^{2}+2 \mathrm{PR}^{2}
\end{aligned}
$$

Hence it proved.

Question 8.

In the adjacent figure, ABC is a right-angled triangle with right angle at B and points D, E trisect $B C$. Prove that $8 A E^{2}=3 A^{2}+5 A^{2}$.

Solution:
Since D and E are the points of trisection of BC,
therefore $\mathrm{BD}=\mathrm{DE}=\mathrm{CE}$
Let $\mathrm{BD}=\mathrm{DE}=\mathrm{CE}=\mathrm{x}$
Then $B E=2 x$ and $B C=3 x$
In right triangles $\mathrm{ABD}, \mathrm{ABE}$ and ABC , (using Pythagoras theorem)
We have $\mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BD}^{2}$
$\Rightarrow A D^{2}=A B^{2}+x^{2}$
$\mathrm{AE}^{2}=\mathrm{AB}^{2}+\mathrm{BE}^{2}$
$\Rightarrow \mathrm{AB}^{2}+(2 \mathrm{x})^{2}$
$\Rightarrow \mathrm{AE}^{2}=\mathrm{AB}^{2}+4 \mathrm{x}^{2}$
and $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AB}^{2}+(3 \mathrm{x})^{2}$
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+9 \mathrm{x}^{2}$
Now $8 \mathrm{AE}^{2}-3 \mathrm{AC}^{2}-5 \mathrm{AD}^{2}=8\left(\mathrm{AB}^{2}+4 \mathrm{x}^{2}\right)-3\left(\mathrm{AB}^{2}+9 \mathrm{x}^{2}\right)-5\left(\mathrm{AB}^{2}+\mathrm{x}^{2}\right)$
$=8 \mathrm{AB}^{2}+32 \mathrm{x}^{2}-3 \mathrm{AB}^{2}-27 \mathrm{x}^{2}-5 \mathrm{AB}^{2}-5 \mathrm{x}^{2}$
$=0$
$\therefore 8 \mathrm{AE}^{2}-3 \mathrm{AC}^{2}-5 \mathrm{AD}^{2}=0$
$8 \mathrm{AE}^{2}=3 \mathrm{AC}^{2}+5 \mathrm{AD}^{2}$.
Hence it is proved.

Ex 4.4

Question 1.

The length of the tangent to a circle from a point P , which is 25 cm away from the centre is 24 cm . What is the radius of the circle?
Solution:
$24^{2}+\mathrm{r}^{2}=25^{2}$
$576+\mathrm{r}^{2}=625$
$\mathrm{r}^{2}=625-576$
$=49$

Question 2.

$\Delta \mathrm{LMN}$ is a right angled triangle with $\angle \mathrm{L}=90^{\circ}$. A circle is inscribed in it. The lengths of the sides containing the right angle are 6 cm and 8 cm . Find the radius of the circle. Solution:
$\Delta \mathrm{LMN}$, By Pythagoras theorem,

$$
\begin{aligned}
\mathrm{MN}^{2} & =\mathrm{LN}^{2}+\mathrm{LM}^{2} \\
& =8^{2}+6^{2}=100 \\
\mathrm{MN} & =10
\end{aligned}
$$

Now, Area of $\Delta \mathrm{LMN}=$ Area of $\Delta \mathrm{OLM}+$ Area of $\triangle O M N+$ Area of $\triangle O N L$.
$\Rightarrow \frac{1}{2} \times \mathrm{LM} \times \mathrm{LN}=\frac{1}{2} \mathrm{LM} \times r+\frac{1}{2} \times \mathrm{MN} \times r$

$$
+\frac{1}{2} \times \mathrm{NL} \times r
$$

$\Rightarrow \quad \frac{1}{2} \times 6 \times 8=\frac{1}{2} \times 6 r+\frac{1}{2} \times 10 r+\frac{1}{2} \times 8 r$

$$
\begin{aligned}
24 & =3 r+5 r+4 r \\
12 r & =24 \Rightarrow r=2 \mathrm{~cm}
\end{aligned}
$$

Question 3.
A circle is inscribed in $\triangle A B C$ having sides $8 \mathrm{~cm}, 10 \mathrm{~cm}$ and 12 cm as shown in figure, Find $A D$, BE and CF .

Column I

a) Cambrian period
b) Devoniar period
c) Cenozoic era
d) Mesozoic era

Column II
i) Age of Reptiles
ii) Age of fishes
iii) Age of inventebrates
iv) Age of mammals
;
(a) a-iii b-ii c-iv d-i
(b) a-iv b-iii c-i d-ii
(c) $\mathrm{a}-i i i \mathrm{~b}-i v \mathrm{c}-i \quad \mathrm{~d}-i i$
(d) $\mathrm{a}-i i \quad \mathrm{~b}-i i i \mathrm{c}-i \quad \mathrm{~d}-i v$

Solution:
We know that the tangents drawn from are external point to a circle are equal.
Therefore $\mathrm{AD}=\mathrm{AF}=\mathrm{x}$ say.
$\mathrm{BD}=\mathrm{BE}=\mathrm{y}$ say and
$\mathrm{CE}=\mathrm{CF}=\mathrm{z}$ say
Now, $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$, and $\mathrm{CA}=10 \mathrm{~cm}$.
$x+y=12, y+z=8$ and $z+x=10$
$(x+y)+(y+z)+(z+x)=12+8+10$
$2(x+y+z)=30$
$x+y+z=15$
Now, $x+y=12$ and $x+y+z=15$
$12+z=15 \Rightarrow z=3$
$\mathrm{y}+\mathrm{z}=8$ and $\mathrm{x}+\mathrm{y}+\mathrm{z}=15$
$\mathrm{x}+8=15 \Rightarrow \mathrm{x}=7$
and $\mathrm{z}+\mathrm{x}=10$ and $\mathrm{x}+\mathrm{y}+\mathrm{z}=15$
$10+\mathrm{y}=15 \Rightarrow \mathrm{y}=5$
Hence, $\mathrm{AD}=\mathrm{x}=7 \mathrm{~cm}, \mathrm{BE}=\mathrm{y}=5 \mathrm{~cm}$
and $\mathrm{CF}=\mathrm{z}=3 \mathrm{~cm}$.

Question 4.

$P Q$ is a tangent drawn from a point P to a circle with centre O and QOR is a diameter of the circle such that $\angle \mathrm{POR}=120^{\circ}$. Find $\angle \mathrm{OPQ}$.
Solution:
$\angle \mathrm{POR}+\angle \mathrm{POQ}=180^{\circ}\left(\right.$ straight angle $\left.=180^{\circ}\right)$
$\therefore 120+\angle \mathrm{POQ}=180^{\circ}$
$\angle \mathrm{POQ}=60^{\circ}$
$\angle \mathrm{OQP}=90^{\circ}\left(\because\right.$ radius is \perp^{r} to the tangent at the point of contact $)$

$\therefore \angle \mathrm{POQ}+\angle \mathrm{PQO}+\angle \mathrm{OPQ}=180^{\circ}\left(\because\right.$ sum of the 3 angles of a triangle is $\left.180^{\circ}\right)$
$\therefore 60+90+\angle \mathrm{OPQ}=80^{\circ}$
$\angle \mathrm{OPQ}=180^{\circ}-150^{\circ}=30^{\circ}$

Question 5.

A tangent ST to a circle touches it at B . AB is a chord such that $\angle \mathrm{ABT}=65^{\circ}$. Find $\angle \mathrm{AOB}$, where " O " is the centre of the circle.
Solution:
In the figure,
$\angle \mathrm{OBT}=90^{\circ}(\because$ OB-radius, BT - Tangent $)$
$=115^{\circ}$
$\therefore \angle \mathrm{OBA}=90^{\circ}-65^{\circ}$
$\angle \mathrm{OAB}=25^{\circ}(\mathrm{OA}=\mathrm{OB})$
$\therefore \angle \mathrm{AOB}=180^{\circ}-50^{\circ}$
$=130^{\circ}$

Evolutionery Human

(A) Homo sapienS
(B) Homo erectus
(C) Homo habilis
(D) Australopithecus
(a) $a-i v \quad b-i \quad c-i i \quad d$-iii
(b) $a-i i \quad b-i v \quad c-i i i \quad d-i$
(c) $a-i i \quad b-i i i \quad c-i v \quad d-i$
(d) $a-i i i \cdot b-i \quad c-i i \quad d-i v$

(a) $a-i v$	$b-i$	$c-i i$	$d-i i i$
(b) $a-i i$	$b-i v$	$c-i i i$	$d-i$
(c) $a-i i$	$b-i i i$	$c-i v$	$d-i$
(d) $a-i i i$	$b-i$	$c-i i$	$d-i v$

Brain Capacity
i) 900 cc
ii) $650-800 \mathrm{cc}$
iii) 350-450 cc
iv) $1300-1600 \mathrm{cc}$

Question 6.

In figure, O is the centre of the circle with radius 5 cm . T is a point such that $\mathrm{OT}=13 \mathrm{~cm}$ and OT intersects the circle E , if AB is the tangent to the circle at E , find the length of AB .

Fig. 6.1 Diagrammatic representation of Urey-Miller's experiment
Solution:
In $\triangle \mathrm{OPT}, \mathrm{OP}=\mathrm{r}=5 \mathrm{~cm}$
$\mathrm{OT}=13 \mathrm{~cm}$
$\mathrm{PT}=12 \mathrm{~cm}$
In $\triangle \mathrm{OPA}, \mathrm{OA}^{2}=\mathrm{OP}^{2}+\mathrm{AP}^{2}$
In $\triangle \mathrm{OAE}, \mathrm{OA}^{2}=\mathrm{OE}^{2}+\mathrm{AE}^{2}$
Equating (1) and (2),
$\mathrm{OP}^{2}+\mathrm{AP}^{2}=\mathrm{OE}^{2}+\mathrm{AE}^{2}(\because \mathrm{OP}=\mathrm{OE}=\mathrm{r})$
$\therefore \mathrm{AP}=\mathrm{AE}$
Parallel BQ = EB
In $\triangle \mathrm{AET}, \mathrm{AT}^{2}=\mathrm{AE}^{2}+\mathrm{ET}^{2}$
$\therefore \mathrm{ET}^{2}=\mathrm{AT}^{2}-\mathrm{AE}^{2}=(\mathrm{AT}+\mathrm{AE})(\mathrm{AT}-\mathrm{AE})$
$\therefore \mathrm{ET}^{2}=(\mathrm{AT}+\mathrm{AP})(\mathrm{AT}-\mathrm{AE})(\because \mathrm{AE}=\mathrm{AP})$
$\therefore 8 \times 8=12 \times(\mathrm{AT}-\mathrm{AE})$
$\therefore \quad(\mathrm{AT}-\mathrm{AE}) \quad=\frac{64}{12}=\frac{16}{3}$

$$
\begin{equation*}
\mathrm{AT}+\mathrm{AE}=\mathrm{AT}+\mathrm{AP}=\mathrm{PT}=12 . \tag{4}
\end{equation*}
$$

Adding (3) and (4),

$$
2 \mathrm{AT}=\frac{16}{3}+12
$$

$$
\mathrm{AT}=\frac{8}{3}+\frac{18}{3}=\frac{26}{3}
$$

$$
\mathrm{AE}=\mathrm{AT}-\mathrm{AE}
$$

$$
=\frac{26}{3}-\frac{16}{3}=\frac{10}{3}
$$

Parallel $\mathrm{EB}=\frac{10}{3}$

$$
\therefore \quad \mathrm{AB}=\mathrm{AE}+\mathrm{EB}=\frac{20}{3} \mathrm{~cm} .
$$

Question 7.

In two concentric circles, a chord of length 16 cm of larger circle becomes a tangent to the smaller circle whose radius is 6 cm . Find the radius of the larger circle.
Solution:
$\mathrm{AB}=16 \mathrm{~cm}$ given
$\mathrm{CA}=\mathrm{CB}\left(\because \mathrm{OC} \perp^{\mathrm{r}} \mathrm{AB}\right)$

$\mathrm{OB}^{2}=\mathrm{OC}^{2}+\mathrm{BC}^{2}$
$=6^{2}+8^{2}$
$=36+64=100$
$\mathrm{OB}=$ Radius of the larger circle $=\sqrt{100}=10 \mathrm{~cm}$.

Question 8.

Two circles with centres O and O ' of radii 3 cm and 4 cm respectively intersect at two points P and Q , such that OP and O'P are tangents to the two circles. Find the length of the common chord PQ .
Solution:
Given: $\mathrm{OP}=\mathrm{OQ}=4$
$\mathrm{O}^{\prime} \mathrm{P}=\mathrm{O}^{\prime} \mathrm{Q}=3$

OO^{\prime} is the perpendicular bisector of chord PQ.
Let R be the point of intersection of PQ and OO^{\prime}.
Assume $\mathrm{PR}=\mathrm{QR}=\mathrm{x}$ and $\mathrm{OR}=\mathrm{y}$
In $\mathrm{OPO}^{\prime}, \mathrm{OP}^{2}+\mathrm{O}^{\prime} \mathrm{P}^{2}=\left(\mathrm{OO}^{\prime}\right)^{2} \Rightarrow \mathrm{OO}^{\prime}$
$=\sqrt{4^{2}+3^{2}}=5$
$O R=y \Rightarrow O R=5-y$
In $\triangle \mathrm{OPR}, \mathrm{PR}^{2}+\mathrm{OR}^{2}=\mathrm{OP}^{2} \Rightarrow \mathrm{x}^{2}+\mathrm{y}=4^{2} \ldots \ldots \ldots$. (1)
In $\triangle O^{\prime} P R, P R^{2}+O^{\prime} R^{2}=O^{\prime} P^{2} \Rightarrow x^{2}+(5-y)^{2}=9$ \qquad
(1) $-(2)=>y^{2}-\left(25+y^{2}-10 y\right)=16-9$
$\Rightarrow \mathrm{y}^{2}-25-\mathrm{y}^{2}+10 \mathrm{y}=7$.
$\Rightarrow 10 \mathrm{y}=25+7 \Rightarrow 10 \mathrm{y}=32$
$\Rightarrow \mathrm{y}=3.2$
Substituting $\mathrm{y}=3.2$ in (1), we get $\mathrm{x}=\sqrt{4^{2}-3.2^{2}}$
$\mathrm{x}=2.4$
$P Q=2 x \Rightarrow P Q=4.8 \mathrm{~cm}$

Question 9.

Show that the angle bisectors of a triangle are concurrent.
Solution:

In $\triangle A B C$, let $A D, B E$ are two angle bisectors.
They meet at the point ' O '
We have to prove that $=\frac{A C}{C D}=\frac{A O}{O D}$
Construct CO to meet the interesecting point O from C .
In $\triangle \mathrm{ABE}, \frac{\mathrm{AB}}{\mathrm{AE}}=\frac{\mathrm{BO}}{\mathrm{OE}}$ also $\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{DC}}$ (by angle bisector theorem)
$\therefore \frac{\mathrm{AB}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{DC}}$
In $\triangle \mathrm{ABD}, \frac{\mathrm{AB}}{\mathrm{BD}}=\frac{\mathrm{AO}}{\mathrm{OD}}$
From (1) \& (2) we get $\frac{\mathrm{AC}}{\mathrm{DC}}=\frac{\mathrm{AO}}{\mathrm{OD}}$
Hence proved.

Question 10.

In $\triangle A B C$, with $\angle B=90^{\circ}, B C=6 \mathrm{~cm}$ and $A B=8 \mathrm{~cm}$, D is a point on $A C$ such that $A D=2 \mathrm{~cm}$ and E is the midpoint of $A B$. Join D to E and extend it to meet at F. Find BF.
In the figure $\triangle \mathrm{ABC}, \triangle \mathrm{EBF}$ are similar triangles.
Solution:
Consider DABC, Then D, E, F are respective points on the sides CA, AB and BC. By constrution

D, E, F are collinear.

$$
\begin{align*}
& \text { By menelaus' theorem, } \frac{\mathrm{AE}}{\mathrm{~EB}} \times \frac{\mathrm{BF}}{\mathrm{FC}} \times \frac{\mathrm{CD}}{\mathrm{DA}}=1 . \tag{1}\\
& \begin{aligned}
& \mathrm{FC}=\mathrm{FB}+\mathrm{BC}=\mathrm{BF}+6 \\
& \text { By pythagoras therom } \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
&=64+36=100
\end{aligned}
\end{align*}
$$

$\therefore \mathrm{AC}=10, \mathrm{CD}=8$
(1) $\Rightarrow \frac{4}{4} \times \frac{B F}{B F+6 A} \times \frac{8}{2}=1$

$4 \mathrm{BF}=\mathrm{BF}+6 \Rightarrow \mathrm{BF}=2 \mathrm{~cm}$

Question 11.

An artist has created a triangular stained glass window and has one strip of small length left before completing the window. She needs to figure out the length of left out portion based on the lengths of the other sides as shown in the figure.

Solution:
In the figure, let O be the concurrent point of the angle bisectors of the three angles.

$$
\begin{align*}
& \frac{\mathrm{BF}}{\mathrm{FA}}=\frac{\mathrm{OB}}{\mathrm{OA}} \tag{1}\\
& \frac{\mathrm{CD}}{\mathrm{DB}}=\frac{\mathrm{OC}}{\mathrm{OB}} \tag{2}\\
& \frac{\mathrm{AE}}{\mathrm{EC}}=\frac{\mathrm{OA}}{\mathrm{OC}} \tag{3}
\end{align*}
$$

Multiplying the corresponding sides of (1), (2) and (3) we get

$$
\begin{aligned}
\frac{\mathrm{AF}}{\mathrm{FA}} \times \frac{\mathrm{CD}}{\mathrm{DB}} \times \frac{\mathrm{AE}}{\mathrm{EC}} & =\frac{\not B}{\not B A} \times \frac{\partial C}{\partial B} \times \frac{\partial A}{\not A C}=1 \\
\frac{x}{\not \partial} \times \frac{1 \sigma^{2}}{\not \partial} \times \frac{\beta}{A_{2}} & =1 \\
\frac{x}{2} & =1 \\
x & =2 \mathrm{~cm}
\end{aligned}
$$

Question 12.

Draw a tangent at any point R on the circle of radius 3.4 cm and centre at P ?
Solution:
Radius $=3.4 \mathrm{~cm}$
Centre $=P$
Tangent at any point R.

Construction:
Steps:
(1) Draw a circle with centre P of radius 3.4 cm .
(2) Take a point R on the circle. Join PR.
(3) Draw \perp^{r} line TT ${ }^{1}$ to PR. Which passes through R.
(4) TT1 is the required tangent.

Question 13.

Draw a circle of radius 4.5 cm . Take a point on the circle. Draw the tangent at that point using the alternate segment theorem.
Solution:

Construction:

Steps:
(1) With O as the centre, draw a circle of radius 4.5 cm .
(2) Take a point R on the circle. Through R draw any chord PR.
(3) Take a point Q distinct from P and R on the circle, so that $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are in anti-clockwise direction. Join PQ and QR.
(4) Through R drawn a tangent TT^{1} such that $\angle \mathrm{TRP}=\angle \mathrm{PQR}$.
(5) TT^{1} is the required tangent.

Question 14.

Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm . Also, measure the lengths of the tangents.
Solution:
Radius $=5 \mathrm{~cm}$
The distance between the point from the centre is 10 cm .

Construction:
Steps:
(1) With O as centre, draw a circle of radius 5 cm .
(2) Draw a line $\mathrm{OP}=10 \mathrm{~cm}$.
(3) Draw a perpendicular bisector of OP which cuts OP at M.
(4) With M as centre and MO as radius, draw a circle which cuts previous circle at A and B.
(5) Join AP and BP. AP and BP are the required tangents. Thus length of the tangents are PA and $\mathrm{PB}=8.7 \mathrm{~cm}$.
Verification:
In the right triangle $\angle \mathrm{POA}$;

$$
\begin{aligned}
\mathrm{PA} & =\sqrt{\mathrm{OP}^{2}-\mathrm{OA}^{2}} \\
\mathrm{PA} & =\sqrt{10^{2}-5^{2}} \\
& =\sqrt{100-25} \\
& =\sqrt{75} \\
& \cong 8.7 \mathrm{~cm} \text { (approximately) }
\end{aligned}
$$

Question 15.

Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw the two tangents to the circle from that point.
Solution:
Radius $=4 \mathrm{~cm}$

The distance of a point from the center $=11 \mathrm{~cm}$.

Construction:
Steps:
(1) With centre O, draw a circle of radius 4 cm .
(2) Draw a line $O P=11 \mathrm{~cm}$.
(3) Draw a \perp^{r} bisector of OP, which cuts atM.
(4) With M as centre and MO as radius, draw a circle which cuts previous circle at A and B .
(5) Join AP and BP . AP and BP are the required tangents. Thus length of the tangents are $\mathrm{PA}=\mathrm{PB}$ $=10.2 \mathrm{~cm}$.
Verification:
In the right triangle
$\angle \mathrm{OPA}, \mathrm{PA}=\sqrt{\mathrm{OP}^{2}-\mathrm{OA}^{2}}$
$=\sqrt{11^{2}-4^{2}}$
$=\sqrt{121-16}$
$=\sqrt{105}$
$\cong 10.2 \mathrm{~cm}$ (approximately)

Question 16.

Draw the two tangents from a point which is 5 cm away from the centre of a circle of diameter 6 cm . Also, measure the lengths of the tangents.
Solution:
Diameter $=6 \mathrm{~cm}$
Radius $=\frac{6}{2}=3 \mathrm{~cm}$.
The distance between the centre and the point is 5 cm .

Rough diagram

Construction:
Steps:
(1) With centre O, draw a circle of radius, 3 cm .
(2) Draw a line OP $=5 \mathrm{~cm}$.
(3) Draw a bisector of OP, which cuts OP and M.
(4) With M as centre and MO as radius draw a circle which cuts previous circle at A and B.
(5) Join AP and BP. AP and BP are the required tangents. Thus length of the tangents are $\mathrm{PA}=\mathrm{PB}$ $=4 \mathrm{~cm}$
Verification:
In the right triangle $\triangle \mathrm{OPA}$,

$$
\begin{aligned}
\mathrm{PA} & =\sqrt{\mathrm{OP}^{2}-\mathrm{OA}^{2}} \\
& =\sqrt{5^{2}-3^{2}} \\
& =\sqrt{25-9}=\sqrt{16} \\
& =4 \mathrm{~cm} .
\end{aligned}
$$

Question 17.

Draw a tangent to the circle from the point P having radius 3.6 cm , and centre at O . Point P is at a distance 7.2 cm from the centre.
Radius 3.6 cm .
Solution:
Distance from the centre to the point is 7.2 cm .

Construction:
Steps:
(1) Draw a circle of radius 3.6 cm with centre O .
(2) Draw a line OP $=7.2 \mathrm{~cm}$.
(3) Draw a perpendicular bisector of OP, which cuts OP at M.
(4) With M as centre and MO as radius, draw a circle which cuts previous circle at A and B .
(5) Join AP and BP . AP and BP are the required tangents. Thus length of the tangents are $\mathrm{PA}=\mathrm{PB}$ $=6.2 \mathrm{~cm}$.
Verification:
In the right triangle.

$$
\begin{aligned}
& \mathrm{OPA}, \mathrm{PA} \\
& =\sqrt{\mathrm{OP}^{2}-\mathrm{OA}^{2}} \\
& =\sqrt{7.2^{2}-3.6^{2}}
\end{aligned}=\sqrt{51.84-12.96} \mathrm{VCERT}, ~=\sqrt{38.88}
$$

Ex 4.5

Multiple choice questions.
Question 1.
If in triangles ABC and $\mathrm{EDF}, \frac{\mathbf{A B}}{\mathbf{D E}}=\frac{\mathbf{B C}}{\mathbf{F D}}$ then they will be similar, when
(1) $\angle \mathrm{B}=\angle \mathrm{E}$
(2) $\angle \mathrm{A}=\angle \mathrm{D}$
(3) $\angle \mathrm{B}=\angle \mathrm{D}$
(4) $\angle \mathrm{A}=\angle \mathrm{F}$

Solution:
(1) $\angle \mathrm{B}=\angle \mathrm{E}$

Hint:

$\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}$, then they will be similar when
$\angle \mathrm{B}=\angle \mathrm{E}$

Question 2.
In, $\triangle \mathrm{LMN}, \angle \mathrm{L}=60^{\circ}, \angle \mathrm{M}=50^{\circ}$. If $\triangle \mathrm{LMN} \sim \triangle \mathrm{PQR}$ then the value of $\angle \mathrm{R}$ is
(1) 40°
(2) 70°
(3) 30°
(4) 110°

Solution:
(2) 70°

$\Delta \mathrm{LMN} \sim \triangle \mathrm{PQR}, \angle \mathrm{R}=70^{\circ}$.
Question 3.
If $\triangle A B C$ is an isosceles triangle with $\angle C=90^{\circ}$ and $A C=5 \mathrm{~cm}$, then $A B$ is
(1) 2.5 cm
(2) 5 cm
(3) 10 cm
(4) $5 \sqrt{2} \mathrm{~cm}$

Solution:
(4) $5 \sqrt{2} \mathrm{~cm}$

Hint:

$A B=\sqrt{5^{2}+5^{2}}=\sqrt{50}=\sqrt{25 \times 2}=5 \sqrt{2} \mathrm{~cm}$.

Question 4.
In a given figure $S T \| Q R, P S=2 \mathrm{~cm}$ and $\mathrm{SQ}=3 \mathrm{~cm}$. Then the ratio of the area of $\triangle P Q R$ to the area of $\triangle \mathrm{PST}$ is

(1) $25: 4$
(2) $25: 7$
(3) $25: 11$
(4) $25: 13$

Solution:
(1) $25: 4$

Hint:

Ratio of the area of similar triangles is equal to the ratio of the square of their corresponding sides.
$\therefore 5^{2}: 2^{2}=25: 4$

Question 5.
The perimeters of two similar triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are 36 cm and 24 cm respectively. If PQ $=10 \mathrm{~cm}$, then the length of AB is
(1)
$6 \frac{2}{3} \mathrm{~cm}$
(2) $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
(3) $66 \frac{2}{3} \mathrm{~cm}$
(4) 15 cm

Solution:
(4) 15 cm

Hint:

$$
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{36}{24}
$$

$\frac{\mathrm{AB}}{10 \mathrm{~cm}}=\frac{36}{24}$
$24 \mathrm{AB}=360$

$\mathrm{AB}=\frac{360^{30}}{24_{2}}=15$

Question 6.
If in $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC} . \mathrm{AB}=3.6 \mathrm{~cm}, \mathrm{AC}=2.4 \mathrm{~cm}$ and $\mathrm{AD}=2.1 \mathrm{~cm}$ then the length of AE is
(1) 1.4 cm
(2) 1.8 cm
(3) 1.2 cm
(4) 1.05 cm

Solution:
(1) 1.4 cm

$$
\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}
$$

$\frac{3 \cdot 6}{2 \cdot 1}=\frac{2 \cdot 4}{\mathrm{~A} \cdot \mathrm{E}}$
(3.6) $(\mathrm{AE})=2.1 \times 2.4$
$\mathrm{AE}=1.4 \mathrm{~cm}$
Question 7.
In a $\triangle A B C, A D$ is the bisector of $\angle B A C$. If $A B=8 \mathrm{~cm}, B D=6 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$. The length of the side AC is
(1) 6 cm
(2) 4 cm
(3) 3 cm
(4) 8 cm

Solution:
(2) 4 cm

Hint:

$$
\begin{aligned}
\frac{\mathrm{AB}}{\mathrm{AC}} & =\frac{\mathrm{BD}}{\mathrm{DC}} \\
\frac{8}{x} & =\frac{6}{3} \\
6 x & =24 \Rightarrow x=4
\end{aligned}
$$

Question 8.
In the adjacent figure $\angle \mathrm{BAC}=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$ then

(1) $\mathrm{BD} \cdot \mathrm{CD}=\mathrm{BC}^{2}$
(2) $\mathrm{AB} \cdot \mathrm{AC}=\mathrm{BC}^{2}$
(3) $\mathrm{BD} \cdot \mathrm{CD}=\mathrm{AD}^{2}$
(4) $\mathrm{AB} \cdot \mathrm{AC}=\mathrm{AD}^{2}$

Solution:
(3) $\mathrm{BD} . \mathrm{CD}=\mathrm{AD}^{2}$
(i) $\mathrm{BD} \cdot \mathrm{CD}=\mathrm{BC}^{2} \Rightarrow \frac{\mathrm{BD}}{\mathrm{BC}}=\frac{\mathrm{BC}}{\mathrm{CD}} \quad \triangle$
(ii) $\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{BC}}{\mathrm{AC}}$
x
(iii) $\mathrm{BD} \cdot \mathrm{CD}=\mathrm{AD}^{2} \Rightarrow \frac{\mathrm{BD}}{\mathrm{AD}}=\frac{\mathrm{AD}}{\mathrm{CD}} \square$
$\Rightarrow \mathrm{BD} \cdot \mathrm{CD}=\mathrm{AD}^{2}$
(iv) $\mathrm{AB} \cdot \mathrm{AC}=\mathrm{AD}^{2} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AD}}{\mathrm{AC}}$
$=\mathrm{BD} \cdot \mathrm{CD}=\mathrm{AD}^{2}$ 区
Question 9.
Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m , what is the distance between their tops?
(1) 13 cm
(2) 14 m
(3.) 15 m
(4) 12.8 m

Solution:
(1) 13 cm

Hint:

$$
\begin{aligned}
\mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& =5^{2}+12^{2} \\
& =25+144 \\
& =169 \\
\mathrm{AC} & =13 \mathrm{~m}
\end{aligned}
$$

Question 10.
In the given figure, $\mathrm{PR}=26 \mathrm{~cm}, \mathrm{QR}=24 \mathrm{~cm}, \mathrm{PAQ}=90^{\circ}, \mathrm{PA}=6 \mathrm{~cm}$ and $\mathrm{QA}=8 \mathrm{~cm}$. Find $\angle \mathrm{PQR}$

(1) 80°
(2) 85°
(3) 75°
(4) 90°

Solution:
(4) 90°

Hint:
$\mathrm{PR}=26$
$\mathrm{QR}=24$
$\angle \mathrm{PAQ}=90^{\circ}$
$\mathrm{PQ}=10$
$\mathrm{PQ}=\sqrt{26^{2}-24^{2}}=\sqrt{100}=10$
$\therefore \angle \mathrm{PAQ}=90^{\circ}$

Question 11.
A tangent is perpendicular to the radius at the \qquad
(1) centre
(2) point of contact
(3) infinity
(4) chord

Answer:
(2) point of contact

Question 12.
How many tangents can be drawn to the circle from an exterior point?
(1) one
(2) two
(3) infinite
(4) zero

Solution:
(2) two

Question 13.
The two tangents from an external points P to a circle with centre at O are PA and PB . If $\angle \mathrm{APB}=$ 70° then the value of $\angle \mathrm{AOB}$ is
(1) 100°
(2) 110°
(3) 120°
(4) 130°

Solution:
(2) 110°

Hint:

Question 14.
In figure CP and CQ are tangents to a circle T with centre at O . ARB is another tangent touching the circle at R. If $C P=11 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$, then the length of $B R$ is
(1) 6 cm
(2) 5 cm
(3) 8 cm
(4) 4 cm

Solution:
(4) 4 cm

$$
\begin{aligned}
& \mathrm{BQ}=\mathrm{BR} \\
& C P=\mathrm{CQ}=11 \\
& \mathrm{BC}=7, \therefore \mathrm{BQ}=\mathrm{CQ}-\mathrm{BC} \\
& =11-7=4 \\
& \mathrm{BR}=\mathrm{BQ}=4 \mathrm{~cm}
\end{aligned}
$$

Question 15.
In figure if PR is tangent to the circle at P and O is the centre of the circle, then $\angle \mathrm{POQ}$ is
(1) 120°
(2) 100°
(3) 110°
(4) 90°

Solution:
(1) 120°
$\angle \mathrm{POQ}=180^{\circ}-\left(30^{\circ}+30^{\circ}\right)$
$=180^{\circ}-60^{\circ}$
$=120^{\circ}$

Unit Exercise 4

Question 1.
In the figure, if $\mathrm{BD} \perp \mathrm{AC}$ and $\mathrm{CE} \angle \mathrm{AB}$, prove that
(i) $\triangle \mathrm{AEC} \sim \triangle \mathrm{ADB}$
(ii) $\frac{\mathrm{CA}}{\mathrm{AB}}=\frac{\mathrm{CE}}{\mathrm{DB}}$

Solution:
In the figure's $\triangle \mathrm{AEC}$ and $\triangle \mathrm{ADB}$.
We have $\angle \mathrm{AEC}=\angle \mathrm{ADB}=90(\because \mathrm{CE} \angle \mathrm{AB}$ and $\mathrm{BD} \angle \mathrm{AC})$
and $\angle \mathrm{EAC}=\angle \mathrm{DAB}$
[Each equal to $\angle \mathrm{A}$]
Therefore by AA-criterion of similarity, we have $\triangle \mathrm{AEC} \sim \triangle \mathrm{ADB}$
(ii) We have
$\triangle \mathrm{AEC} \sim \triangle \mathrm{ADB}$ [As proved above]
$\Rightarrow \frac{C A}{B A}=\frac{E C}{D B} \Rightarrow \frac{C A}{A B}=\frac{C E}{D B}$
Hence proved.

Question 2.
In the given figure $\mathrm{AB}\|\mathrm{CD}\| \mathrm{EF}$. If $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{CD}=\mathrm{xcm}, \mathrm{EF}=4 \mathrm{~cm}, \mathrm{BD}=5 \mathrm{~cm}$ and $\mathrm{DE}=\mathrm{y}$ cm . Find x and y .

Solution:
In the given figure, $\triangle \mathrm{AEF}$, and $\triangle \mathrm{ACD}$ are similar Δ^{s}.
$\angle \mathrm{AEF}=\angle \mathrm{ACD}=90^{\circ}$
$\angle \mathrm{A}=\angle \mathrm{A}$ (common)
$\therefore \triangle \mathrm{AEF} \sim \triangle \mathrm{ACD}$ (By AA criterion of similarity)

$$
\begin{align*}
\frac{\mathrm{AE}}{\mathrm{AC}}=\frac{\mathrm{EF}}{\mathrm{CD}}=\frac{4}{x} & \Rightarrow \mathrm{AC}=\frac{\mathrm{AE} \times \mathrm{CD}}{\mathrm{EF}} \tag{1}\\
\mathrm{AC} & =\frac{x \times \mathrm{AE}}{4}
\end{align*}
$$

In $\triangle \mathrm{EAB}$ and $\triangle \mathrm{ECD}$,

$$
\text { we have } \angle \mathrm{ECD}=\angle \mathrm{EAB}=90^{\circ}
$$

$$
\angle \mathrm{E}=\angle \mathrm{E} \text { (common) }
$$

$\therefore \quad \triangle \mathrm{ECD} \sim \triangle \mathrm{EAB}$
$\Rightarrow \quad \frac{\mathrm{CE}}{\mathrm{EA}}=\frac{\mathrm{CD}}{\mathrm{BA}}=\frac{x}{6}$
$\frac{\mathrm{CE}}{\mathrm{EA}}=\frac{x}{6}$
$\mathrm{CE}=\frac{x \times \mathrm{EA}}{6}$

By BPT

$$
\begin{align*}
\frac{\mathrm{CE}}{\mathrm{EA}} & =\frac{y}{y+5} \\
\frac{x}{6} & =\frac{y}{y+5} \tag{3}
\end{align*}
$$

From (1) and (2), we have

$$
\begin{aligned}
\mathrm{AC}+\mathrm{CE} & =\frac{x \times \mathrm{AE}}{4}+\frac{x \times \mathrm{AE}}{6} \\
\mathrm{AE} & =\mathrm{AE} \times x\left[\frac{1}{4}+\frac{1}{6}\right] \\
1 & =x\left(\frac{6+4}{24}\right)=\frac{10 x}{24} \\
\therefore \quad x & =\frac{24}{10}=2.4 \mathrm{~cm}=\frac{12}{5}
\end{aligned}
$$

Subtstituting $\mathrm{x}=2.4 \mathrm{~cm}$ in (3)
We get, $\quad \frac{2 \cdot 4}{6}=\frac{y}{y+5}$

$$
\begin{aligned}
6 y & =2 \cdot 4 y+2 \cdot 4 \times 5 \\
6 y & =2 \cdot 4 y+12 \\
6 y-2 \cdot 4 y & =12 \\
3 \cdot 6 y & =12 \\
y & =\frac{12 \times 10}{3.6 \times 10} \\
& =\frac{120^{10}}{366_{3}}=3.3 \mathrm{~cm} \\
x & =2.4 \mathrm{~cm} \\
y & =3.3 \mathrm{~cm}
\end{aligned}
$$

Question 3.
O is any point inside a triangle ABC . The bisector of $\angle \mathrm{AOB}, \angle \mathrm{BOC}$ and $\angle \mathrm{COA}$ meet the sides AB, BC and CA in point D, E and F respectively.
Show that $\mathrm{AD} \times \mathrm{BE} \times \mathrm{CF}=\mathrm{DB} \times \mathrm{EC} \times \mathrm{FA}$
Solution:
In $\triangle A O B, O D$ is the bisector of $\angle A O B$.

$\therefore \quad \frac{\mathrm{OA}}{\mathrm{OB}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
In $\triangle \mathrm{BOC}, \mathrm{OE}$ is the bisector of $\angle \mathrm{BOC}$
$\therefore \frac{\mathrm{OB}}{\mathrm{OC}}=\frac{\mathrm{BE}}{\mathrm{EC}}$
In $\triangle \mathrm{COA}, \mathrm{OF}$ is the bisector of $\angle \mathrm{COA}$.
$\therefore \frac{\mathrm{OC}}{\mathrm{OA}}=\frac{\mathrm{CF}}{\mathrm{FA}}$
Multiplying the corresponding sides of (1), (2) and (3), we get

$$
\begin{align*}
& \frac{\partial A}{\partial B} \times \frac{\partial B}{\partial C} \times \frac{\partial C}{\partial A}=\frac{A D}{D B} \times \frac{B E}{E C} \times \frac{C F}{F A} \tag{3}\\
& 1=\frac{A D}{D B} \times \frac{B E}{E C} \times \frac{C F}{F A} \\
& \Rightarrow D B \times E C \times F A=A D \times B E \times C F
\end{align*}
$$

Hence proved.
Question 4.
In the figure, ABC is a triangle in which $\mathrm{AB}=\mathrm{AC}$. Points D and E are points on the side AB and AC respectively such that $\mathrm{AD}=\mathrm{AE}$. Show that the points $\mathrm{B}, \mathrm{C}, \mathrm{E}$ and D lie on a same circle.

Solution:
In order to prove that the points $\mathrm{B}, \mathrm{C}, \mathrm{E}$ and D are concyclic, it is sufficient to show that $\angle \mathrm{ABC}+$ $\angle \mathrm{CED}=180^{\circ}$ and $\angle \mathrm{ACB}+\angle \mathrm{BDE}=180^{\circ}$.

In $\triangle A B C$, we have $A B=A C$ and $A D=A E$.
$\Rightarrow \mathrm{AB}-\mathrm{AD}=\mathrm{AC}-\mathrm{AE}$
$\Rightarrow \mathrm{DB}=\mathrm{EC}$
Thus we have $\mathrm{AD}=\mathrm{AE}$ and $\mathrm{DB}=\mathrm{EC}$. (By the converse of Thale's theorem)
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \Rightarrow \mathrm{DE} \| \mathrm{BC}$
$\angle \mathrm{ABC}=\angle \mathrm{ADE}$ (corresponding angles)
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{BDE}=\angle \mathrm{ADE}+\angle \mathrm{BDE}$ (Adding $\angle \mathrm{BDE}$ on both sides)
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{BDE}=180^{\circ}$
$\Rightarrow \angle \mathrm{ACB}+\angle \mathrm{BDE}=180^{\circ}(\because \mathrm{AB}=\mathrm{AC} \therefore \angle \mathrm{ABC}=\angle \mathrm{ACB})$
Again DE || BC
$\Rightarrow \angle \mathrm{ACB}=\angle \mathrm{AED}$
$\Rightarrow \angle \mathrm{ACB}+\angle \mathrm{CED}=\angle \mathrm{AED}+\angle \mathrm{CED}$ (Adding $\angle \mathrm{CED}$ on both sides).
$\Rightarrow \angle \mathrm{ACB}+\angle \mathrm{CED}=180^{\circ}$ and
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{CED}=180^{\circ}(\because \angle \mathrm{ABC}=\angle \mathrm{ACB})$
Thus BDEC is a quadrilateral such that
$\Rightarrow \angle \mathrm{ACB}+\angle \mathrm{BDE}=180^{\circ}$ and
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{CED}=180^{\circ}$
\therefore BDEC is a cyclic quadrilateral. Hence B, C, E, and D are concyclic points.

Question 5.
Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels at a speed of $20 \mathrm{~km} / \mathrm{hr}$ and the second train travels at 30 $\mathrm{km} / \mathrm{hr}$. After 2 hours, what is the distance between them?
Solution:
After 2 hours, let us assume that the first train is at A and the second is at B .

$$
\begin{aligned}
\mathrm{OA} & =\text { speed } \times \text { time } \\
& =20 \times 2=40 \mathrm{~km} \\
\mathrm{OB} & =\text { speed } \times \text { time } \\
& =30 \times 2=60 \mathrm{~km}
\end{aligned}
$$

Distance between the trains after 2 hours,

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{\mathrm{OA}^{2}+\mathrm{OB}^{2}} \text { (pythogoras theorem) } \\
& =\sqrt{40^{2}+60^{2}} \\
& =\sqrt{1600+3600}=\sqrt{5200}=\sqrt{400 \times 13} \\
& =20 \sqrt{13} \\
\mathrm{AB} & =72.11 \mathrm{~km} \text { or } \mathrm{AB}=20 \sqrt{13} \mathrm{~km} .
\end{aligned}
$$

Question 6.
D is the mid point of side BC and $\mathrm{AE} \perp \mathrm{BC}$. If i $\mathrm{BC} \mathrm{a}, \mathrm{AC}=\mathrm{b}, \mathrm{AB}=\mathrm{c}, \mathrm{ED}=\mathrm{x}, \mathrm{AD}=\mathrm{p}$ and $\mathrm{AE}=\mathrm{h}$, prove that
(i) $\mathrm{b}^{2}=\mathrm{p}^{2}+\mathrm{ax}+\frac{a^{2}}{4}$
(ii) $\mathrm{c}^{2}=\mathrm{p}^{2}-\mathrm{ax}+\frac{a^{2}}{4}$
(iii) $\mathrm{b}^{2}+\mathrm{c}^{2}=2 \mathrm{p}^{2}+\frac{a^{2}}{2}$

Solution:

From the figure, D is the mid point of BC.

We have $\angle \mathrm{AED}=90^{\circ}$
$\therefore \angle \mathrm{ADE}<90^{\circ}$ and $\angle \mathrm{ADC}>90^{\circ}$
i.e. $\angle \mathrm{ADE}$ is acute and $\angle \mathrm{ADC}$ is obtuse,
(i) In $\triangle \mathrm{ADC}, \angle \mathrm{ADC}$ is obtuse angle.
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}+2 \mathrm{DC} \times \mathrm{DE}$
$\Rightarrow \mathrm{AC}^{2}=\mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}+2 \cdot \frac{1}{2} \mathrm{BC} . \mathrm{DE}$
$\Rightarrow \mathrm{AC}^{2}=\mathrm{AD}^{2}+\frac{1}{4} \mathrm{BC}^{2}+\mathrm{BC} . \mathrm{DE}$
$\Rightarrow \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BC} . \mathrm{DE}+\frac{1}{4} \mathrm{BC}^{2}$
$\Rightarrow \mathrm{b}^{2}=\mathrm{p}^{2}+\mathrm{ax}+\frac{1}{4} \mathrm{a}^{2}$
Hence proved.
(ii) In $\triangle \mathrm{ABD}, \angle \mathrm{ADE}$ is an acute angle.
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}-2 \mathrm{BD} . \mathrm{DE}$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AD}^{2}+\left(\frac{1}{2} \mathrm{BC}\right)^{2}-2 \times \frac{1}{2} \mathrm{BC} . \mathrm{DE}$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AD}^{2}+\frac{1}{4} \mathrm{BC}^{2}-\mathrm{BC} . \mathrm{DE}$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} . \mathrm{DE}+\frac{1}{4} \mathrm{BC}^{2}$
$\Rightarrow c^{2}=p^{2}-a x+\frac{1}{4} \mathrm{a}^{2}$
Hence proved.
(iii) From (i) and (ii) we get .
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$
i.e. $\mathrm{c}^{2}+\mathrm{b}^{2}=2 \mathrm{p}^{2}+\frac{a^{2}}{2}$

Hence it is proved.

Question 7.
A man whose eye-level is 2 m above the ground wishes to find the height of a tree. He places a mirror horizontally on the ground 20 m from the tree and finds that if he stands at a point C which is 4 m from the mirror B , he can see the reflection of the top of the tree. How height is the tree? Solution:
From the figure; $\triangle \mathrm{DAC}, \triangle \mathrm{FBC}$ are similar triangles and $\triangle \mathrm{ACE} \& \triangle \mathrm{ABF}$ are similar triangles.

\therefore From $\triangle A C D$ and $\triangle B C F$

$$
\begin{align*}
\frac{\mathrm{AD}}{\mathrm{BF}}=\frac{\mathrm{AC}}{\mathrm{BC}} & \Rightarrow \frac{h}{x}=\frac{20+4}{4} \\
\frac{h}{x} & =\frac{24}{4}=6 . \\
\Rightarrow \quad h & =6 x . \tag{1}
\end{align*}
$$

From $\triangle \mathrm{ACE} \& \triangle \mathrm{ABF}$.

$$
\begin{gather*}
\frac{2}{x}=\frac{20+4}{20} \Rightarrow \frac{2}{x}=\frac{24^{6}}{2 \sigma_{5}} \\
6 x=10 \tag{2}
\end{gather*}
$$

\therefore height of the tree $\mathrm{h}=6 \mathrm{x}=10 \mathrm{~m}$.
Question 8.
An emu which is 8 ft tall standing at the foot of a pillar which is 30 ft height. It walks away from the pillar. The shadow of the emu falls beyond emu. What is the relation between the length of the shadow and the distance from the emu to the pillar?
Solution:
Let OA (emu shadow) the x and $\mathrm{AB}=\mathrm{y}$.
\Rightarrow pillar's shadow $=\mathrm{OB}=\mathrm{OA}+\mathrm{AB}$
$\Rightarrow \mathrm{OB}=\mathrm{x}+\mathrm{y}$

From basic proportionality theorem,

$$
\begin{aligned}
\frac{\mathrm{OA}}{\mathrm{OB}} & =\frac{\mathrm{AD}}{\mathrm{BC}} \\
\frac{x}{x+y} & =\frac{8}{30}
\end{aligned}
$$

Reciprocating on both sides, we get
$\Rightarrow \frac{x}{x+y}=\frac{30}{8} \Rightarrow 1+\frac{y}{x}=\frac{30}{8} \Rightarrow \frac{y}{x}=\frac{30}{8}-1$
$\Rightarrow \frac{y}{x}=\frac{30-8}{8} \Rightarrow \frac{y}{x}=\frac{22}{8} \Rightarrow \frac{y}{x}=\frac{11}{4}$
$\Rightarrow x=\frac{4}{11} \times y \Rightarrow$ shadow $=\frac{4}{11} \times$ distance
Question 9.
Two circles intersect at A and B. From a point P on one of the circles lines PAC and PBD are drawn intersecting the second circle at C and D . Prove that CD is parallel to the tangent at P .
Solution:
Let XY be the tangent at P .
TPT: CD is || to XY.
Construction: Join AB.
ABCD is a cyclic quadilateral.
$\angle \mathrm{BAC}+\angle \mathrm{BDC}=180^{\circ}$
$\angle \mathrm{BDC}=180^{\circ}-\angle \mathrm{BAC}$
Equating (1) and (2)
we get $\angle \mathrm{BDC}=\angle \mathrm{PAB}$
Similarly we get $\angle \mathrm{PBA}=\angle \mathrm{ACD}$
as XY is tangent to the circle at ' P '
$\angle \mathrm{BPY}=\angle \mathrm{PAB}$ (by alternate segment there)

$\therefore \angle \mathrm{PAB}=\angle \mathrm{PDC}$
$\angle \mathrm{BPY}=\angle \mathrm{PDC}$
$X Y$ is parallel of $C D$.
Hence proved.

Question 10.
Let ABC be a triangle and $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are points on the respective sides $\mathrm{AB}, \mathrm{BC}, \mathrm{AC}$ (or their extensions). Let $\mathrm{AD}: \mathrm{DB}=5: 3, \mathrm{BE}: \mathrm{EC}=3: 2$ and $\mathrm{AC}=21$. Find the length of the line segment CF.
Solution:

$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{5}{3}, \frac{\mathrm{BE}}{\mathrm{EC}}=\frac{3}{2}$,
$\mathrm{AC}=21 \Rightarrow \frac{\mathrm{CF}}{\mathrm{FA}}=\frac{\mathrm{CF}}{21-\mathrm{CF}}$
\therefore By Ceva's theorem,

$$
\frac{\mathrm{BE}}{\mathrm{EC}} \times \frac{\mathrm{CF}}{\mathrm{FA}} \times \frac{\mathrm{AD}}{\mathrm{DB}}=+1
$$

$$
\frac{\not p}{2} \times \frac{\mathrm{CF}}{21-\mathrm{CF}} \times \frac{5}{\not p}=+1
$$

$$
\frac{\mathrm{CF}}{21-\mathrm{CF}}=\frac{2}{5}
$$

$$
\begin{equation*}
5 C F=42-2 C F \tag{1}
\end{equation*}
$$

$$
5 \mathrm{CF}+2 \mathrm{CF}=42
$$

$$
\begin{aligned}
& 7 \mathrm{CF}=42 \\
& \mathrm{CF}=\frac{42}{7}=6 \text { units }
\end{aligned}
$$

Additional Questions

Question 1.
In figure if $\mathrm{PQ} \| \mathrm{RS}$, Prove that $\triangle \mathrm{POQ} \sim \Delta \mathrm{SOR}$
Solution:
PQ \| RS

So, $\angle \mathrm{P}=\angle \mathrm{S}$ (A Hernate angles)
and $\angle \mathrm{Q}=\angle \mathrm{R}$
Also, $\angle \mathrm{POQ}=\angle \mathrm{SOR}$ (vertically opposite angle)
$\therefore \triangle \mathrm{POQ} \sim \Delta \mathrm{SOR}$ (AAA similarity criterion)
Question 2.
In figure $\mathrm{OA} . \mathrm{OB}=\mathrm{OC} . \mathrm{OD}$ Show that $\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}$
Solution:
$\mathrm{OA} . \mathrm{OB}=\mathrm{OC} . \mathrm{OD}$ (Given)

Also we have $\angle \mathrm{AOD}=\angle \mathrm{COB}$
(vertically opposite angles)

From (1) and (2)
$\therefore \triangle \mathrm{AOD} \sim \Delta \mathrm{COB}$ (SAS similarity criterion)
So, $\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}$
(corresponding angles of similar triangles)
Question 3.
In figure the line segment XY is parallel to side AC of $\triangle \mathrm{ABC}$ and it divides the triangle into two parts of equal areas. Find the ratio $\frac{\mathbf{A X}}{\mathbf{A B}}$
Solution:

Given $\mathrm{XY} \| \mathrm{AC}$

So, $\quad \underline{B X Y}=\lfloor A$ and
BYX $=\angle C$ (corresponding angles)
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{XBY} \quad$ (AAA similarity criterion)
So, $\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{XBY})}=\left(\frac{\mathrm{AB}}{\mathrm{XB}}\right)^{2}$
$\operatorname{ar}(\mathrm{ABC})=2 \operatorname{ar}(\mathrm{XBY})$
$\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{XBY})}=\frac{2}{1}$
From (1) and (2),

$$
\begin{aligned}
\left(\frac{\mathrm{AB}}{\mathrm{XB}}\right)^{2} & =\frac{2}{1} \text { i.e., } \frac{\mathrm{AB}}{\mathrm{XB}}=\frac{\sqrt{2}}{1} \\
\frac{\mathrm{XB}}{\mathrm{AB}} & =\frac{1}{\sqrt{2}} \\
1-\frac{\mathrm{XB}}{\mathrm{AB}} & =1-\frac{1}{\sqrt{2}} \\
\frac{\mathrm{AB}-\mathrm{XB}}{\mathrm{AB}} & =\frac{\sqrt{2}-1}{\sqrt{2}} \\
\frac{\mathrm{AX}}{\mathrm{AB}} & =\frac{\sqrt{2}-1}{\sqrt{2}}=\frac{2-\sqrt{2}}{2}
\end{aligned}
$$

Question 4.
In $\mathrm{AD} \perp \mathrm{BC}$, prove that $\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2}$.
Solution:
From $\triangle \mathrm{ADC}$, we have
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
(Pythagoras theorem)

From $\triangle \mathrm{ADB}$, we have
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
(Pythagoras theorem)
Subtracting (1) from (2) we have,
$\mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BD}^{2}-\mathrm{CD}^{2}$
$\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2}$

Question 5.
BL and CM are medians of a triangle ABC right angled at A .
Prove that $4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5 \mathrm{BC}^{2}$.
Solution:
BL and CM are medians at the $\triangle \mathrm{ABC}$ in which
$\mathrm{A}=\angle 90^{\circ}$.
From $\triangle \mathrm{ABC}$
$\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
(Pythagoras theorem)

From $\triangle \mathrm{ABL}$,

$$
\begin{align*}
& \mathrm{BL}^{2}=\mathrm{AL}^{2}+\mathrm{AB}^{2} \tag{1}\\
& \mathrm{BL}^{2}=\left(\frac{\mathrm{AC}}{2}\right)^{2}+\mathrm{AB}^{2}
\end{align*}
$$

(L is the mid-point at AC)
$\mathrm{BL}^{2}=\frac{\mathrm{AC}^{2}}{4}+\mathrm{AB}^{2}$

$$
\begin{equation*}
4 \mathrm{BL}^{2}=\mathrm{AC}^{2}+4 \mathrm{AB}^{2} \tag{2}
\end{equation*}
$$

From $\triangle C M A$,

$$
\mathrm{CM}^{2}=\mathrm{AC}^{2}+\mathrm{AM}^{2}
$$

$$
\mathrm{CM}^{2}=\mathrm{AC}^{2}+\left(\frac{\mathrm{AB}}{2}\right)^{2}
$$

(M is the mid-point at AB)
$\mathrm{CM}^{2}=\mathrm{AC}^{2}+\frac{\mathrm{AB}^{2}}{4}$
$4 \mathrm{CM}^{2}=4 \mathrm{AC}^{2}+\mathrm{AB}^{2}$
Adding (2) and (3), we have
$4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5\left(\mathrm{AC}^{2}+\mathrm{AB}^{2}\right)$
$4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5 \mathrm{BC}^{2}[$ From (1) $]$
Question 6.
Prove that in a right triangle, the square of the hypotenure is equal to the sum of the squares of the others two sides.
Solution:
Proof:

We are given a right triangle ABC right angled at B .
We need to prove that $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Let us draw $\mathrm{BD} \perp \mathrm{AC}$
Now, $\triangle \mathrm{ADB} \sim \Delta \mathrm{ABC}$
$\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AB}}{\mathrm{AC}}$ (sides are proportional)
$\mathrm{AD} . \mathrm{AC}=\mathrm{AB}^{2}$
Also, $\triangle \mathrm{BDC} \sim \triangle \mathrm{ABC}$
$\frac{C D}{B C}=\frac{B C}{A C}$
$\mathrm{CD} . \mathrm{AC}=\mathrm{BC}^{2}$
Adding (1) and (2)
$\mathrm{AD} . \mathrm{AC}+\mathrm{CD} . \mathrm{AC}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$A C(A D+C D)=A B^{2}+B C^{2}$
$\mathrm{AC} . \mathrm{AC}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$A C^{2}=A B^{2}+B C^{2}$

Question 7.
A ladder is placed against a wall such that its foot is at a distance of 2.5 m from the wall and its top reaches a window 6 m above the ground. Find the length of the ladder.
Solution:
Let AB be the ladder and CA be the wall with the window at A .

Also, $\mathrm{BC}=2.5 \mathrm{~m}$ and $\mathrm{CA}=6 \mathrm{~m}$
From Pythagoras theorem,
$\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{CA}^{2}$
$=(2.5)^{2}+(6)^{2}$
$=42.25$
$\mathrm{AB}=6.5$
Thus, length at the ladder is 6.5 m .
Question 8.
In figure O is any point inside a rectangle ABCD . Prove that $\mathrm{OB}^{2}+\mathrm{OD}^{2}=\mathrm{OA}^{2}+\mathrm{OC}^{2}$.
Solution:
Through O , draw $\mathrm{PQ} \| \mathrm{BC}$ so that P lies on AB and Q lies on DC .
Now, $\mathrm{PQ} \| \mathrm{BC}$
$\mathrm{PQ} \perp \mathrm{AB}$ and $\mathrm{PQ} \perp \mathrm{DC}\left(\because \angle \mathrm{B}=90^{\circ}\right.$ and $\left.\angle \mathrm{C}=90^{\circ}\right)$
So, $\angle \mathrm{BPQ}=90^{\circ}$ and $\angle \mathrm{CQP}=90^{\circ}$
Therefore BPQC and APQD are both rectangles.
Now from $\triangle \mathrm{OPB}$,
$\mathrm{OB}^{2}=\mathrm{BP}^{2}+\mathrm{OP}^{2}$
Similarly from $\triangle \mathrm{OQD}$,
$\mathrm{OD}^{2}=\mathrm{OQ}^{2}+\mathrm{DQ}^{2}$
From $\triangle O Q C$, we have
$\mathrm{OC}^{2}=\mathrm{OQ}^{2}+\mathrm{CQ}^{2}$
$\triangle O A P$, we have
$\mathrm{OA}^{2}=\mathrm{AP}^{2}+\mathrm{OP}^{2}$
Adding (1) and (2)
$\mathrm{OB}^{2}+\mathrm{OD}^{2}=\mathrm{BP}^{2}+\mathrm{OP}^{2}+\mathrm{OQ}^{2}+\mathrm{DQ}^{2}(\mathrm{As} \mathrm{BP}=\mathrm{CQ}$ and $\mathrm{DQ}=\mathrm{AP})$
$=\mathrm{CQ}^{2}+\mathrm{OP}^{2}+\mathrm{OQ}^{2}+\mathrm{AP}^{2}$
$=\mathrm{CQ}^{2}+\mathrm{OQ}^{2}+\mathrm{OP}^{2}+\mathrm{AP}^{2}$
$=\mathrm{OC}^{2}+\mathrm{OA}^{2}[$ From (3) and (4)]

Question 9.
In $\angle \mathrm{ACD}=90^{\circ}$ and $\mathrm{CD} \perp \mathrm{AB}$. Prove that $\frac{\mathbf{B C}^{2}}{\mathbf{A C}^{2}}=\frac{\mathbf{B D}}{\mathbf{A D}}$
Solution:
$\Delta \mathrm{ACD} \sim \Delta \mathrm{ABC}$

So,

$$
\begin{align*}
& \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\mathrm{AD}}{\mathrm{AC}} \\
& \mathrm{AC}^{2}=\mathrm{AB} \cdot \mathrm{AD} \tag{1}
\end{align*}
$$

Similarly $\triangle \mathrm{BCD} \sim \triangle \mathrm{BAC}$
So,

$$
\begin{align*}
& \frac{\mathrm{BC}}{\mathrm{BA}}=\frac{\mathrm{BD}}{\mathrm{BC}} \\
& \mathrm{BC}^{2}=\mathrm{BA} \cdot \mathrm{BD} \tag{2}
\end{align*}
$$

From (1) and (2)

$$
\frac{\mathrm{BC}^{2}}{\mathrm{AC}^{2}}=\frac{\mathrm{BA} \cdot \mathrm{BD}}{\mathrm{AB} \cdot \mathrm{AD}}=\frac{\mathrm{BD}}{\mathrm{AD}}
$$

Question 10.
The perpendicular from A on side $B C$ at a $\triangle A B C$ intersects $B C$ at D such that $D B=3 C D$. Prove that $2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$.
Solution:
We have $\mathrm{DB}=3 \mathrm{CD}$

$$
\begin{aligned}
\mathrm{BC} & =\mathrm{BD}+\mathrm{DC} \\
\mathrm{BC} & =3 \mathrm{CD}+\mathrm{CD} \\
\mathrm{BC} & =4 \mathrm{CD} \\
\mathrm{CD} & =\frac{1}{4} \mathrm{BC}
\end{aligned}
$$

$$
\mathrm{CD}=\frac{1}{4} \mathrm{BC} \text { and }
$$

$$
\mathrm{BD}=3 \mathrm{CD}=\frac{3}{4} \mathrm{BC}
$$

Since $\triangle \mathrm{ABD}$ is a right triangle (i) right angled at D
$A B^{2}-A D^{2}+\mathrm{BD}^{2}$
$\mathrm{By} \triangle \mathrm{ACD}$ is a right triangle right angled at D

$$
\begin{equation*}
\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2} \tag{iii}
\end{equation*}
$$

Subtracting equation (iii) from equation (ii), we got

$$
\begin{aligned}
\mathrm{AB}^{2}-\mathrm{AC}^{2} & =\mathrm{BD}^{2}-\mathrm{CD}^{2} \\
\Rightarrow \quad \mathrm{AB}^{2}-\mathrm{AC}^{2} & =\left(\frac{3}{4} \mathrm{BC}\right)^{2}-\left(\frac{1}{4} \mathrm{BC}\right)^{2}
\end{aligned}
$$

$$
\left.\mathrm{CD}=\frac{1}{4} \mathrm{BC}, \mathrm{BD}=\frac{3}{4} \mathrm{BC}\right)
$$

$$
\Rightarrow \quad \mathrm{AB}^{2}-\mathrm{AC}^{2}=\frac{9}{16} \mathrm{BC}^{2}-\frac{1}{16} \mathrm{BC}^{2}
$$

$$
\Rightarrow \quad \mathrm{AB}^{2}-\mathrm{AC}^{2}=\frac{1}{2} \mathrm{BC}^{2}
$$

$$
\Rightarrow 2\left(\mathrm{AB}^{2}-\mathrm{AC}^{2}\right)=\mathrm{BC}^{2}
$$

$$
\Rightarrow \quad 2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}
$$

